Answer:
did you have the same answer to get the best
Answer:
Answer:This organism may be identified by its color, the spines on its back, the antennae, and therefore the long, thin body. There are many other characteristics that might even be wont to identify this organism.
Explanation:
Answer:
The induced current direction as viewed is clockwise
Explanation:
Lenz's Law states that the induced e. m. f. causes current to be driven in the loop of wire in such a way as to generate magnetic field that are oppose the magnetic flux change which is the source of the induced current
Therefore, as the magnet approaches the coil with the south pole, the coil produces current equivalent to the upward movement of the south pole of a permanent magnet through it which according to Flemings Right Hand Rule is clockwise
Therefore;
The direction of the induced current in the loop (as viewed from above, looking down the magnet) is clockwise
Distance, Force
<u>Explanation:</u>
1) Increasing the load will add to the friction on the bearings of the pulleys, thus reducing the efficiency of the system. The ideal mechanical advantage won't change since the ideal mechanical advantage ignores friction.
2) Increasing the number of pulleys will increase the ideal mechanical advantage, but because of friction it will decrease the efficiency. The more pulleys that are turning, the more friction there is, and the less efficient the system will be.
3) Work = force x distance, and what machines do is alter the amount of force you can apply while at the same time reducing the distance moved by the same factor. For instance, a jack multiplies the force you apply by a factor of 100, when you push down on the handle of the jack 100 cm, the car will only go up 1 cm. So the force x distance is the same 100 x force x 1/100 x distance.
The coefficient of static friction between the puck and the surface.
In fact, that coefficient describes exactly how "hard" it is to cause the puck to start moving, if it starts from an idle condition.