You can download the answer here:
Bit. ly/3a8Nt8n
Answer:
d=510.2m
t=10.2s
Explanation:
The formulas for accelerated motion are:

From them we can get
.
We have:

And substitute:

We multiply both sides by 2a, and continue:

Being d the displacement
, we have 
For our exercise, we will write this as:

And taking upwards direction positive and imposing final velocity 0m/s (for maximum height), we have:

For the time we use:

Answer:
5.03 m
Explanation:
The wavelength of a wave is given by

where
v is the speed of the wave
f is the frequency of the wave
For the sonar signal in this problem,


Substituting into the equation, we find the wavelength:

The sentence can be completed as follows:
"<span>A major difference between radio waves, visible light, and gamma rays is the
energy of the photons, which results in the different photon frequencies and wavelengths."
In fact, gamma rays have greater energy than visible light and visible light has greater energy than radio waves. The energy E of a photon is related to its frequency, f, by
</span>

<span>where h is the Planck constant. We see from this formula that the higher the frequency, the greater the energy. Instead, the wavelength is inversely proportional to the frequency:
</span>

<span>where c is the speed of light. Since the frequency is directly proportional to the energy, this means that the wavelength is inversely proportional to the energy.</span>
Answer:
The extension of the wire is 0.362 mm.
Explanation:
Given;
mass of the object, m = 4.0 kg
length of the aluminum wire, L = 2.0 m
diameter of the wire, d = 2.0 mm
radius of the wire, r = d/2 = 1.0 mm = 0.001 m
The area of the wire is given by;
A = πr²
A = π(0.001)² = 3.142 x 10⁻⁶ m²
The downward force of the object on the wire is given by;
F = mg
F = 4 x 9.8 = 39.2 N
The Young's modulus of aluminum is given by;

Where;
Young's modulus of elasticity of aluminum = 69 x 10⁹ N/m²

Therefore, the extension of the wire is 0.362 mm.