Answer:
The answer is A. on edgen.
Explanation:
A. adding in the boxes an arrow that points from Qh to Qc
Answer:
The frictional force needed to overcome the cart is 4.83N
Explanation:
The frictional force can be obtained using the following formula:

where
is the coefficient of friction = 0.02
R = Normal reaction of the load =
=
= 
Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.

F = 4.83 N
Hence, the frictional force needed to overcome the cart is 4.83N
Answer:
THE BOHR SHIFT ON THE OXYGEN-HEMOGLOBIN DISSOCIATION CURVE IS PRODUCED BY CHANGES IN THE CONCENTRATION OF CARBON IV OXIDE.
Explanation:
The oxygen-hemoglobin dissociation curve shows the relationship between the saturated hemoglobin concentration and oxygen. It shows how the blood hold on to and releases oxygen. The Bohr shift can occur as a result of changes in concentration of carbon iv oxide and other factors such as acidity or pH, 2,3-bisphosphoglycerate, exercise, also temperature of the body. These factors contributes to the right or left shift on the curve. Carbon iv oxide prevents the binding of oxygen to the hemoglobin. The is because hemoglobin has the same binding site for both oxygen and carbon iv oxide. Carbon iv oxide increase also leads to a change in the pH of the blood through the formation of bicarbonate ion. Bicarbonate ion formation causes reduced acidity and therefore lead a shift in the dissociation curve for more of the carbon iv oxide to be excreted as hemoglobin's affinity for oxygen reduces. And when the concentration of carbon iv oxide is low in the plasma, acidity increases and this provides more affinity for oxygen by the hemoglobin.
I believe you mean 6.02*10^7 but you want to shift the decimal 7 times to the right which would be 60200000 (: