Answer:
(a). Energy is 64,680 J
(b) velocity is 51.43m/s
(c) velocity in mph is 115.0mph
Explanation:
(a).
The potential energy
of the payload of mass
is at a vertical distance
is
.
Therefore, for the payload of mass
at a vertical distance of
, the potential energy is


(b).
When the payload reaches the bottom of the shaft, all of its potential energy is converted into its kinetic energy; therefore,




(c).
The velocity in mph is


Option B The thickness of the central portion of a thin conveying lens can be determined very accurately by using a micrometer screw gauge.
<h3>What can be measured using a micrometer screw gauge?</h3>
One micrometer of thickness can be measured with a micron micrometre screw gauge. A Use of Micrometer Screw Gauge as like example Upon turning the screw of the micrometer screw gauge four times, a 2 mm space is covered.
<h3>What purposes does a micrometer serve?</h3>
A tool known as a micrometer is used to measure solid objects’ lengths, thicknesses, and other dimensions precisely and linearly.
<h3>What is the micrometer screw gauge’s SI unit?</h3>
The SI symbol m is also known as a micron, which is an SI-derived unit of length equaling 1106 meters, where 106 is the SI standard prefix for the prefix “micro-.” A micrometer is one-millionth of a meter.
To know more about screw gauges, visit:
brainly.com/question/4704005
#SPJ13
Answer:
106.7 N
Explanation:
We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:

where
F is the average force
is the duration of the collision
m is the mass of the ball
v is the final velocity
u is the initial velocity
In this problem:
m = 0.200 kg
u = 20.0 m/s
v = -12.0 m/s

Solving for F,

And since we are interested in the magnitude only,
F = 106.7 N
Answer:
<h2>3.36J</h2>
Explanation:
Step one:
given data
mass m= 1.3kg
distance moved s= 2.8m
opposing frictional force= 0.34N
assume g= 9.81m/s^2
we know that work done= force *distance moved
1. work done to push the book= 1.55*2.8=4.34J
2. Work against friction = force of friction x distance
= 0.34*2.8=0.952J
Step two:
the work done on the book is the net work, which is
Network done= work done to push the book- Work against friction
Network done= 4.32-0.952=3.36J
<u>Therefore the work of the 1.55N 3.36J</u>
Answer:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. Since the force required to lift it is equal to its weight, it follows that the gravitational potential energy is equal to its weight times the height to which it is lifted.