Answer:
Yes
Explanation:
Eclipses: Eclipses are also known as game of shadows where one object comes between the star(light source) and another object in a straight line such that the shadow of one object falls on other object. This can occur when the apparent size of the star and the object is almost same.
Talking about the Earth, the geometry is such that the Moon and the Sun are of same apparent size as seen from the Earth. Thus Lunar and Solar eclipse can be seen from the Earth. If we were to go on any other planet the same phenomenon can be seen provided the apparent size of moon and the Sun from that planet is same.
We have seen and recorded many such eclipses on Jupiter. These are from the perspective of Earth. When the moons of Jupiter comes exactly between the Sun and Jupiter the shadow of moon will fall on Jupiter. The places where the shadow falls, one will see a solar eclipse.
Answer:
solution given:
acceleration (a)=?
initial velocity (u)=3m/s
final velocity (v)=6m/s
distance (s)=90m
we have
v²=u²+2as
substituting value
6²=3²+2*a*90
36=9+180a
36-9=180a
a=25/180
<u>a=0.1388m/s²</u>
Answer:
Explanation:
Energy is what makes change happen and can be transferred form one object to another. ... Power is the rate at which energy is transferred. It is not energy but is often confused with energy. The watt is the most commonly used unit of measure for power.
That could be a comet, or any one of the billions of meteoroids
moving in a cloud that's actually the remains of a shattered comet.
Here we have perfectly inelastic collision. Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:

In case of perfectly inelastic collision v'1 and v'2 are same.
We are given information:
m₁=0.5kg
m₂=0.8kg
v₁=3m/s
v₂=2m/s
v'₁=v'₂=x
0.5*3 + 0.8*2 = 0.5*x + 0.8*x
1.5 + 1.6 = 1.3x
3.1 = 1.3x
x = 2.4 m/s