Answer:
The person is 187[m] farther and 70° south to east.
Explanation:
We can solve this problem by drawing a sketch of the location of the person and the truck, then we will draw the displacement vectors and finally the length of the vector and the direction of the vector will be measured in order to give the correct indication of where the person will have to move.
First we establish an origin of a coordinate system.
We can see in the attached schema that the red vector is the displacement vector from the last point to where the truck is located.
The length of the vector is 187 [m], and the direction is 70 degrees south to East.
<span>To begin, the formula for finding frequency when wavelength is known is "f = c / w" when c is the constant velocity (3 * 10^8 m/s). To convert the wavelength into a common form (m/s), it will have to be multiplied by 10^-2. This leaves the equation as "f = 3.0 * 10^8 / (2.4 * 10^-5 * 10^-2), or 2.4 * 10^-7. This gives 1.25 * 10^15 m/s as the frequency.</span>
The correct answer would be 1.375 < t < 3 i hope this helps anyone
Complete question is;
A rocket ship starts from rest and turns on its forward booster rockets, causing it to have a constant acceleration of 4 m/s² rightward. After 3s, what will be the velocity of the rocket ship?
Answer:
v = 12 m/s
Explanation:
We are given;
Initial velocity; u = 0 m/s (because ship starts from rest)
Acceleration; a = 4 m/s²
Time; t = 3 s
To find velocity after 3 s, we will use Newton's first equation of motion;
v = u + at
v = 0 + (4 × 3)
v = 12 m/s
In solids, particles or atom are very closely arranged compared to gasses. When these particles are arranged in such proximity, vibrations from sound are very easily transmitted from one particle to another in the solid. Hence, the sound vibrations can travel through the solid medium more quickly than through a gas medium.
Speed of sound also depends on its frequency and the wavelength.