Answer:
The correct answer is "4.443 sec".
Explanation:
Given:
Mass of child,
= 34 kg
Mass of swing,
= 18 kg
Length,
= 4.9 m
The time period of pendulum will be:
T = 
= 
=
The force of the air resistance is 4 N.
The given parameters;
- mass of the flower pot, m = 2 kg
- weight of the flower pot, W = 20 N
Let the air resistance = F
Apply Newton's second law of motion to determine the force of the air resistance acting upward to oppose the motion of the pot falling downwards.

Thus, the force of the air resistance is 4 N.
Learn more here: brainly.com/question/19887955
It will take 13
seconds for the golf ball to hit the ground. The correct answer between
all the choices given is the last choice or letter D. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
Answer:
Explanation:
Given that
Force constant k=8.6N/m
Weight =64g=64/1000=0.064kg
Extension is 45mm=45/1000= 0.045m
It will have it highest spend when the Potential energy is zero
Therefore energy in spring =change in kinetic energy
Ux=∆K.e
½ke² = ½mVf² — ½mVi²
Initial velocity is 0, Vi=0m/s
½ke² = ½mVf²
½ ×8.6 × 0.045² = ½ ×0.064 ×Vf²
0.0087075 = 0.032 Vf²
Then, Vf² = 0.0087075/0.032
Vf² = 0.2721
Vf=√0.2721
Vf= 0.522m/s
The time it will have this maximum velocity?
Using equation of motion
Vf= Vi + gr
0.522= 0+9.81t
t=0.522/9.81
t= 0.0532sec
t= 53.2 milliseconds
The force applied to the lever is 400 N, because the force applied by the lever (800 N) divided by the mechanical advantage of the lever (4) equals
400 N.
(800/4) = 200