1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ryzh [129]
3 years ago
14

A 12-mm-diameter cylindrical jet of water discharges vertically into the ambient air. Due to surface tension the pressure inside

the jet will be slightly higher than the surrounding atmospheric pressure. Determine this difference in pressure.

Engineering
1 answer:
navik [9.2K]3 years ago
3 0

Answer:

Explanation:

Given

Diameter of cylindrical is d=12\ mm

There is excess Pressure in the cylindrical jet which can be  calculated by using Equilibrium free body  Diagram of an element of jet

excess Pressure force will balance the Surface tension force of water jet

\Delta P\times Area=Surface\ tension \times length

\Delta P\cdot 2R\delta l=\sigma \times 2\delta l

where \sigma =surface tension of water

\Delta P=excess Pressure

R=radius

\delta l=length of element

therefore \Delta P=\frac{\sigma }{R}

Surface Tension of water is \sigma =7.34\times 10^{-2}\ N/m

\Delta P=\frac{7.34\times 10^{-2}}{6\times 10^{-3}}

\Delta P=12.23\ Pa

     

You might be interested in
For a certain gas, Cp = 840.4 J/kg-K; and Cv = 651.5 J/kg-K. How fast will sound travel in this gas if it is at an adiabatic sta
Crank

Answer:

The speed of the sound for the adiabatic gas is 313 m/s

Explanation:

For adiabatic state gas, the speed of the sound c is calculated by the following expression:

c=\sqrt(\gamma*R*T)

Where R is the gas's particular constant defined in terms of Cp and Cv:

R=Cp-Cv

For particular values given:

R=840.4 \frac{J}{Kg-K}- 651.5 \frac{J}{Kg-K}

R=188.9 \frac{J}{Kg-K}

The gamma undimensional constant is also expressed as a function of Cv and Cp:

\gamma=Cp/Cv

\gamma=840.4 \frac{J}{Kg-K} / 651.5 \frac{J}{Kg-K}

\gamma=1.29

And the variable T is the temperature in Kelvin. Thus for the known temperature:

c=\sqrt(1.29*188.9 \frac{J}{Kg-K}*377 K)

c=\sqrt(91867.73 \frac{J}{Kg})

The Jules unit can expressing by:

J=N.m=\frac{Kg.m}{s^2}* m

J=\frac{Kg.m^2}{s^2}

Replacing the new units for the speed of the sound:

c=\sqrt(91867.73 \frac{Kg.m^2}{Kg.s^2})

c=\sqrt(91867.73 \frac{m^2}{s^2})

c=313 m/s

3 0
3 years ago
Read 2 more answers
What are the disadvantages of having a liquid cooled engine?
Feliz [49]
One notable disadvantage of liquid cooling over air cooling is that it is considerably costly to set up. Cooling fans are prevalent in the market, and this overabundance of supply means they are cheap. The components of a liquid cooling system can be expensive.
5 0
3 years ago
A home electrical system is joined to the electric company's system at the junction of the
aleksandrvk [35]

That would be B, I hope this helps!

5 0
3 years ago
When you multiply monomials with the same variables, you multiply the coefficients and add the exponents!
RideAnS [48]

Answer: ok

Explanation:

this isn't a question?

3 0
2 years ago
A Pitot-static probe is used to measure the speed of an aircraft flying at 3000 m. If the differential pressure reading is 3200
coldgirl [10]

Answer:

Speed of aircraft ; (V_1) = 83.9 m/s

Explanation:

The height at which aircraft is flying = 3000 m

The differential pressure = 3200 N/m²

From the table i attached, the density of air at 3000 m altitude is; ρ = 0.909 kg/m3

Now, we will solve this question under the assumption that the air flow is steady, incompressible and irrotational with negligible frictional and wind effects.

Thus, let's apply the Bernoulli equation :

P1/ρg + (V_1)²/2g + z1 = P2/ρg + (V_2)²/2g + z2

Now, neglecting head difference due to high altitude i.e ( z1=z2 ) and V2 =0 at stagnation point.

We'll obtain ;

P1/ρg + (V_1)²/2g = P2/ρg

Let's make V_1 the subject;

(V_1)² = 2(P1 - P2)/ρ

(V_1) = √(2(P1 - P2)/ρ)

P1 - P2 is the differential pressure and has a value of 3200 N/m² from the question

Thus,

(V_1) = √(2 x 3200)/0.909)

(V_1) = 83.9 m/s

4 0
3 years ago
Other questions:
  • An air compressor of mass 120 kg is mounted on an elastic foundation. It has been observed that, when a harmonic force of amplit
    13·1 answer
  • A turbine operates at steady state, and experiences a heat loss. 1.1 kg/s of water flows through the system. The inlet is mainta
    6·1 answer
  • Estimate the daily carbon utilization to remove chlorobenzene from 1.0 MGD of ground water saturated with chlorobenzene. Assume
    12·1 answer
  • g A food department is kept at -12oC by a refrigerator in an environment at 30oC. The total heat gain to the food department is
    7·1 answer
  • Dunno what to ask, okbye
    5·1 answer
  • Is microwave man made
    5·2 answers
  • Which scientist was famous for his laws on gravity?
    10·2 answers
  • A 2.0-in-thick slab is 10.0 in wide and 12.0 ft long. Thickness is to be reduced in three steps in a hot rolling operation. Each
    9·1 answer
  • An ocean thermal energy conversion system is being proposed for electric power generation. Such a system is based on the standar
    5·1 answer
  • Type the correct answer in the box. Spell all words correctly.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!