The x-ray beam's penetrating power is regulated by kVp (beam quality). Every time an exposure is conducted, the x-rays need to be powerful (enough) to sufficiently penetrate through the target area.
<h3>How does kVp impact the exposure to digital receptors?</h3>
The radiation's penetration power and exposure to the image receptor both increase as the kVp value is raised.
<h3>Exposure to the image receptor is enhanced with an increase in kVp, right?</h3>
Due to an increase in photon quantity and penetrability, exposure at the image receptor rises by a factor of five of the change in kVp, doubling the intensity at the detector with a 15% change in kVp.
To know more about kVp visit:-
brainly.com/question/17095191
#SPJ4
Answer:
230.51 m
Explanation:
Pb = 695 mmHg
Pt = 675 mmHg
Pb - Pt = 20 mmHg
Calculate dP:
dP = p * g * H = (13600)*(9.81)*(20/1000) = 2668.320 Pa
Calculate Height of building as dP is same for any medium of liquid
dP = p*g*H = 2668.320
H = 2668.32 / (1.18 * 9.81) = 230.51 m
Answer:
d) "Napoleon Declares Himself Holy Roman Emperor"
Explanation:
The French Revolution is defined as a period of the major social upheaval which began in the year 1787 and lasted till year 1799. This revolution completely redefined the the very nature of the political power in France. and also the relationship between the rulers of France and the people they governed.
The 1789 Estates-General was the 1st meeting since year 1614 of the French Estates-General. It is a general assembly which represents the French estates of realm.
During the French revolution was at peak, the National Assembly issued the Declaration of the rights of the man to the public.
Maximilien Robespierre was considered to be one of the most influential figure and most important statesman during the French Revolution.
Thus all the options (a),(b) and (c) are headlines about the French Revolution, except option (d).
Answer:
Yes, this because the specific heat does not violate the third law of thermodynamics.
Explanation:
The third law of thermodynamic is usually used for a closed system to relate the thermodynamic properties of the system at equilibrium conditions. For this law, a body that exists at a temperature of 0 K will cease to move or stop moving. It can be inferred that heat capacity at (T = 0 K) is equivalent to 0. Therefore, the equation is valid for the given temperature range.