1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilia_Sergeevich [38]
4 years ago
6

What are the two most important things to remember when at the end of your interview?

Engineering
1 answer:
Cloud [144]4 years ago
5 0
<h3>Answer:</h3><h3><em>1. Ask questions</em></h3><h3><em>2. Thank the interviewer for their time </em></h3><h3>Explanation:</h3>

1<em>. When the interviewer asked if you have any questions at the end of the interview don't say no. You should always say yes your interviewer is expecting you to ask a few good questions before ending the interview. </em>

<h3><em /></h3>

<em>2. Always thank the interviewer for their time and effort to interview you. This would look very good for you and its a nice way to help wrap up the interview. </em>

You might be interested in
Compute L, T, M, LC, and R and stations of the BC and EC for the circular curve with the given data of: I (delta) = 22°15′00" an
Mars2501 [29]

Answer:

L = 475.718

T = 240.89 ft

M = 23.0195

LC = 472.728

R = 1225 ft

Explanation:

See the attached file for the calculation.

8 0
3 years ago
Consider fully developed laminar flow in a circular pipe. If the viscosity of the fluid is reduced by half by heating while the
gladu [14]

Answer:

The pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its original value.

Explanation:

For a fully developed laminar flow in a circular pipe, the flowrate (volumetric) is given by the Hagen-Poiseulle's equation.

Q = π(ΔPR⁴/8μL)

where Q = volumetric flowrate

ΔP = Pressure drop across the pipe

μ = fluid viscosity

L = pipe length

If all the other parameters are kept constant, the pressure drop across the circular pipe is directly proportional to the viscosity of the fluid flowing in the pipe

ΔP = μ(8QL/πR⁴)

ΔP = Kμ

K = (8QL/πR⁴) = constant (for this question)

ΔP = Kμ

K = (ΔP/μ)

So, if the viscosity is halved, the new viscosity (μ₁) will be half of the original viscosity (μ).

μ₁ = (μ/2)

The new pressure drop (ΔP₁) is then

ΔP₁ = Kμ₁ = K(μ/2)

Recall,

K = (ΔP/μ)

ΔP₁ = K(μ/2) = (ΔP/μ) × (μ/2) = (ΔP/2)

Hence, the pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its value.

Hope this Helps!!!

4 0
3 years ago
6. During some actual expansion and compression processes in piston–cylinder devices, the gases have been
Katyanochek1 [597]

During some actual expansion and compression processes in piston-cylinder devices, the gases have been are the P1= P2.

<h3>What is the pressure?</h3>

Pressure is something that has the pressure that is physical and that causes the pressure is piston-cylinder devices.

During a few real enlargements and compression procedures in piston-cylinder devices, the gases were located to meet the connection PV n = C, wherein n and C are constants.

Read more about the pressure :

brainly.com/question/25736513

#SPJ1

5 0
2 years ago
Tech A says that the brake pedal uses leverage to multiply foot pressure. Tech B says that when braking hard while moving
Nikolay [14]

Tech- A is correct

Explanation:

  • Leverage is defined as using a tool to gain mechanical influence. The measure of the benefit gained depends on what kind of lever is used and how it is utilized.
  • Leverage is designed in such a way that it can reproduce the force from your leg many times before any force is transferred to brake fluid.
  • The brake pedal size and the measure of leverage received depends on the overall design of the brake system.
  • The second-order lever is used in the brake pedal. The brake pedal applies leverage to populate the force employed to the master cylinder. The effort needed to drive a load depends on the corresponding distance of the load and the work from the fulcrum. The proportion of load and work is known as mechanical advantage.
7 0
3 years ago
When checking for a no-star concern, you notice that an engine has no spark Technician A says to turn on the ignition engine (en
lbvjy [14]

Answer:

Technician B

Explanation:

Technician B is correct in his argument. This is because according to what he said, as the computer pulses stimuli the coil will turn on and off, promoting an increase in the voltage that will cause the fluctuation. Technician A is incorrect because the procedure he indicated imposes that the voltage is checked at the negative terminal and not at the positive.

5 0
3 years ago
Other questions:
  • An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
    9·1 answer
  • 1000 lb boulder B is resting on a 500 lb platform A when truck C accidentally accelerates to the right (truck in reverse). Which
    15·1 answer
  • A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
    8·1 answer
  • A refrigerator operates on average for 10.0 hours an day. If the power rating is the refrigerator is 709 w how much electrical e
    13·1 answer
  • An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate (ϵ˙) is found to be
    8·1 answer
  • Which type of Bridge is considered the strongest in both compression and tension?
    11·2 answers
  • . An ideal vapor compression refrigeration cycle operates with a condenser pressure of 900 kPa. The temperature at the inlet to
    14·1 answer
  • While recharging a refrigerant system, the charging stops before the required amount of refrigerant has been inserted. What shou
    8·1 answer
  • An ideal gas is contained in a closed assembly with an initial pressure and temperature of
    14·1 answer
  • Determine the maximum height (in inches) that a lift pump can raise water (0.9971 g/ml) from a well at normal atmospheric pressu
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!