Answer:
135 hour
Explanation:
It is given that a carburizing heat treatment of 15 hour will raise the carbon concentration by 0.35 wt% at a point of 2 mm from the surface.
We have to find the time necessary to achieve the same concentration at a 6 mm position.
we know that
where x is distance and t is time .As the temperature is constant so D will be also constant
So
then
we have given
and we have to find
putting all these value in equation
![\frac{2^2}{15}=\frac{6^2}{t_2}](https://tex.z-dn.net/?f=%5Cfrac%7B2%5E2%7D%7B15%7D%3D%5Cfrac%7B6%5E2%7D%7Bt_2%7D)
so
Answer:
Option D
Explanation:
A post development hydrograph will have lower concentration time and lower infiltration losses and hence sooner peak and higher peak and more runoff or higher area under graph. Therefore, all the answers are correct hence option D
Answer:
An architect will help you determine exactly what you need and come up with inventive ideas to solve even the most complex design problems. Think of us as professional 3D problem solvers! An architect can and should lift your project out of the ordinary.
Explanation:
What are the 3 main functions of an architect?
Design: Architects must design, plan, and develop concepts to create construction plans and technical documents. These are based on client requirements and ideas. Research: Architects must learn about the different building codes, safety regulations, construction innovations and city laws that affect their designs
What are the 7 types of architecture?
There are several main types of architects who focus on different types of structures and designs.
...
Commercial Architects
Office buildings / skyscrapers.
Hotels.
Bridges.
Schools.
Museums.
Government buildings.
Multi-unit residential buildings.
Pretty much any type of building that's not a residential home.
Answer:
835,175.68W
Explanation:
Calculation to determine the required power input to the pump
First step is to calculate the power needed
Using this formula
P=V*p*g*h
Where,
P represent power
V represent Volume flow rate =0.3 m³/s
p represent brine density=1050 kg/m³
g represent gravity=9.81m/s²
h represent height=200m
Let plug in the formula
P=0.3 m³/s *1050 kg/m³*9.81m/s² *200m
P=618,030 W
Now let calculate the required power input to the pump
Using this formula
Required power input=P/μ
Where,
P represent power=618,030 W
μ represent pump efficiency=74%
Let plug in the formula
Required power input=618,030W/0.74
Required power input=835,175.68W
Therefore the required power input to the pump will be 835,175.68W