Choose a quality one, and don't use it as necessary
Answer:
The distance from the entrance at which the boundary layers meet is 0.516m
The distance from the entrance at which the thermal boundary layers meet is 1.89m
Explanation:
For explanation, look at the attached file
Answer:
T = 20.42 N
Explanation:
given data
standard altitude = 30,000 ft
velocity Ca = 500 mph = 0.4 m/s
inlet areas Aa = 7 ft² = 0.65 m²
exit areas Aj = 4.5 ft² = 0.42 m²
velocity at exit Cj = 1600 ft/s = 487.68 m/s
pressure exit
j = 640 lb/ft² = 0.3 bar
solution
we get here thrust of the turbojet that is express as
thrust of the turbojet T = Mg × Cj - Ma × Ca + (
j Aj -
a Ag ) .............1
here Ma = Mg
Ma =
a × Ca Aa = 0.042 kg/s
put value in equation 1 we get
T = 0.042 × (487.68 -0.14) + ( 0.3 × - 0.3 × 0.65 )
T = 20.42 N
Answer:
Fa = 57.32 N
Explanation:
given data
mass = 5 kg
acceleration = 4 m/s²
angular velocity ω = 2 rad/s
solution
first we take here moment about point A that is
∑Ma = Iα + ∑Mad ...............1
put here value and we get
so here I = (
) × m × L² ................2
I = (
) × 5 × 0.8²
I = 0.267 kg-m²
and
a is = r × α
a = 0.4 α
so now put here value in equation is 1
0 = 0.267 α + m r α (0.4) - m A (0.4)
0 = 0.267 α + 5 (0.4α) (0.4 ) - 5 (4) 0.4
so angular acceleration α = 7.5 rad/s²
so here force acting on x axis will be
∑ F(x) = m a(x) ..............3
a(x) = m a - m rα
put here value
a(x) = 5 × 4 - 5 × 0.4 × 7.5
a(x) = 5 N
and
force acting on y axis will be
∑ F(y) = m a(y) .............. 4
a(y) - mg = mrω²
a(y) - 5 × 9.81 = 5 × 0.4 × 2²
a(y) = 57.1 N
so
total force at A will be
Fa =
...............5
Fa =
Fa = 57.32 N