Answer:
electrical
Explanation:
they are working together
Given which are missing in your question:
the flask is filled with 1.45 g of argon at 25 C°
So according to this formula (Partial pressure):
PV= nRT
first, we need n, and we can get by substitution by:
n = 1.45/mass weight of argon
= 1.45 / 39.948 = 0.0363 mol of Ar
we have R constant = 0.0821
and T in kelvin = 25 + 273 = 298
and V = 1 L
∴ P * 1 = 0.0363* 0.0821 * 298 = 0.888 atm
Explanation:
Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest halogen, and is a fuming red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig (in 1825) and Antoine Jérôme Balard (in 1826), its name was derived from the Ancient Greek βρῶμος ("stench"), referring to its sharp and disagreeable smell.
Bromine, 35Br
<u>Answer:</u> The isotopic symbol of barium is
and that of strontium is 
<u>Explanation:</u>
Nuclear fission reactions are defined as the reactions in which a heavier nuclei breaks down in two or more smaller nuclei.
In a nuclear reaction, the total mass and total atomic number remains the same.
- For the given fission reaction:

Total mass on reactant side = total mass on product side
235 + 1 = A + 94 + 3
A = 139
Total atomic number on reactant side = total atomic number on product side
92 + 0 = Z + 36 + 0
Z = 56
The isotopic symbol of barium is 
- For the given fission reaction:

Total mass on reactant side = total mass on product side
235 + 1 = A + 143 + 3
A = 90
Total atomic number on reactant side = total atomic number on product side
92 + 0 = Z + 54 + 0
Z = 38
The isotopic symbol of strontium is 
Hence, the isotopic symbol of barium is
and that of strontium is 
Answer:3 moles
Explanation:
For every three molecules of CO2 that enters the Calvin cycle, one molecule of the three carbon glyceraldehyde 3-phosphate (G3P) is produced. Two molecules of G-3-P are required to produce one molecule of glucose. Therefore, the Calvin cycle needs to make a total of 6 turns to produce two molecules of G-3-P.