The answers include:
- A loaf of risen but unbaked bread - chemical change.
- Photo by Elinor D - chemical change.
- Bread dough rising - chemical change.
<h3>What is a Chemical change?</h3>
This involves the formation of a new products from substances. In this scenario, a rising bread contains alcohol which evaporates.
Photographs also fall under this category and is therefore an irreversible chemical change.
Read more about Chemical change here
brainly.com/question/1222323
#SPJ1
Answer:
The mixture is made up of different atoms and pure substance is made up of same type of atom.
The main difference is that mixture can be separated into its component by physical mean while pure substances can not be separated by physical process
Explanation:
Mixture:
- The properties of the mixture are not same and contains the properties of all those component present in it.
- it is a combination of one or more Pure substances and can be separated by simple physical methods.
- it have varying boiling and melting point
Examples are:
- mixture of salt and sand
- Salt water is mixture of water and NaCl and can be separated by physical mean.
- Alloys: its a mixture of different metal
- Air: mixture of gases
Pure Substance:
Pure substances are those made of same type of atoms all elements and compounds are pure substances.
- it can not be separated by simple physical mean
- it have very constant and consistent melting and boiling point
Examples are:
- Water : contain only water molecule
- All elements: all elements are pure substance made of same atoms
- All compounds: can not be separated by physical mean.
Answer:
Digestive
Explanation:
It is necessary for the body to function so it is technically an organ
Answer:
Approximately 56.8 liters.
Assumption: this gas is an ideal gas, and this change in temperature is an isobaric process.
Explanation:
Assume that the gas here acts like an ideal gas. Assume that this process is isobaric (in other words, pressure on the gas stays the same.) By Charles's Law, the volume of an ideal gas is proportional to its absolute temperature when its pressure is constant. In other words
,
where
is the final volume,
is the initial volume,
is the final temperature in degrees Kelvins.
is the initial temperature in degrees Kelvins.
Convert the temperatures to degrees Kelvins:
.
.
Apply Charles's Law to find the new volume of this gas:
.