Answer:
The change in entropy is -1083.112 joules per kilogram-Kelvin.
Explanation:
If the water is cooled reversibly with no phase changes, then there is no entropy generation during the entire process. By the Second Law of Thermodynamics, we represent the change of entropy (
), in joules per gram-Kelvin, by the following model:

(1)
Where:
- Mass, in kilograms.
- Specific heat of water, in joules per kilogram-Kelvin.
,
- Initial and final temperatures of water, in Kelvin.
If we know that
,
,
and
, then the change in entropy for the entire process is:


The change in entropy is -1083.112 joules per kilogram-Kelvin.
Answer:
Complete ionic:
.
Net ionic:
.
Explanation:
Start by identifying species that exist as ions. In general, such species include:
- Soluble salts.
- Strong acids and strong bases.
All four species in this particular question are salts. However, only three of them are generally soluble in water:
,
, and
. These three salts will exist as ions:
- Each
formula unit will exist as one
ion and one
ion. - Each
formula unit will exist as one
ion and two
ions (note the subscript in the formula
.) - Each
formula unit will exist as one
and two
ions.
On the other hand,
is generally insoluble in water. This salt will not form ions.
Rewrite the original chemical equation to get the corresponding ionic equation. In this question, rewrite
,
, and
(three soluble salts) as the corresponding ions.
Pay attention to the coefficient of each species. For example, indeed each
formula unit will exist as only one
ion and one
ion. However, because the coefficient of
in the original equation is two,
alone should correspond to two
ions and two
ions.
Do not rewrite the salt
because it is insoluble.
.
Eliminate ions that are present on both sides of this ionic equation. In this question, such ions include one unit of
and two units of
. Doing so will give:
.
Simplify the coefficients:
.
The phase diagram of CO2 has a melting curve that slopes up and to the right, in contrast to the phase diagram of water, which has a more conventional shape. It is impossible for liquid CO2 to exist at pressures lower than 5.11 atm because the triple point is 5.11 atm and 56.6 °C.
Due to the fact that ice is less thick than liquid water, the phase diagram of water has an odd melting point that drops with pressure. Carbon dioxide cannot exist as a liquid at atmospheric pressure, according to the phase diagram of the gas. Thus, gaseous carbon dioxide directly sublimes from solid carbon dioxide.
Learn more about solid carbon dioxide.
brainly.com/question/16894647
#SPJ4