The conservation of the momentum allows to find the result of how the astronaut can return to the spacecraft is:
- Throwing the thruster away from the ship.
The momentum is defined as the product of the mass and the velocity of the body, for isolated systems the momentum is conserved. If we define the system as consisting of the astronaut and the evo propellant, this system is isolated and the internal forces become zero. Let's find the moment in two moments.
Initial instant. Astronaut and thrust together.
p₀ = 0
Final moment. The astronaut now the thruster in the opposite direction of the ship.
= m v + M v '
where m is propellant mass and M the astronaut mass.
As the moment is preserved.
0 = m v + M v ’
v ’=
We can see that the astronaut's speed is in the opposite direction to the propeller, that is, in the direction of the ship.
The magnitude of the velocity is given by the relationship between the masses.
In conclusion, using the conservation of the momentun we can find the result of how the astronaut can return to the ship is:
- Throwing the thruster away from the ship.
Learn more here: brainly.com/question/14798485
Answer: 1.289 m
Explanation:
The path the cobra's venom follows since it is spitted until it hits the ground, is described by a parabola. Hence, the equations for parabolic motion (which has two components) can be applied to solve this problem:
<u>x-component:
</u>
(1)
Where:
is the horizontal distance traveled by the venom
is the venom's initial speed
is the angle
is the time since the venom is spitted until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the venom
is the final height of the venom (when it finally hits the ground)
is the acceleration due gravity
Let's begin with (2) to find the time it takes the complete path:
(3)
Rewritting (3):
(4)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(5)
Where:
Substituting the known values:
(6)
Solving (6) we find the positive result is:
(7)
Substituting (7) in (1):
(8)
We finally find the horizontal distance traveled by the venom:
Answer:
The solution is given in the picture attached below
Explanation:
Answer:
Velocity of the electron at the centre of the ring, 
Explanation:
<u>Given:</u>
- Linear charge density of the ring=

- Radius of the ring R=0.2 m
- Distance of point from the centre of the ring=x=0.2 m
Total charge of the ring

Potential due the ring at a distance x from the centre of the rings is given by

The potential difference when the electron moves from x=0.2 m to the centre of the ring is given by

Let
be the change in potential Energy given by

Change in Potential Energy of the electron will be equal to the change in kinetic Energy of the electron

So the electron will be moving with 