Answer:
The extension of the wire is 0.362 mm.
Explanation:
Given;
mass of the object, m = 4.0 kg
length of the aluminum wire, L = 2.0 m
diameter of the wire, d = 2.0 mm
radius of the wire, r = d/2 = 1.0 mm = 0.001 m
The area of the wire is given by;
A = πr²
A = π(0.001)² = 3.142 x 10⁻⁶ m²
The downward force of the object on the wire is given by;
F = mg
F = 4 x 9.8 = 39.2 N
The Young's modulus of aluminum is given by;

Where;
Young's modulus of elasticity of aluminum = 69 x 10⁹ N/m²

Therefore, the extension of the wire is 0.362 mm.
f = 10000N
distance moved = 20 m
work done = 10000*20 = 200000
Answer:
The speed of water flow inside the pipe at point - 2 = 34.67 m / sec
Explanation:
Given data
Diameter at point - 1 = 3.2 cm
Velocity at point - 1 = 1.1 m / sec = 110 cm / sec
Diameter at point - 2 = 0.57 cm
Velocity at point - 2 = ??
We know that from the continuity equation the rate of flow is constant inside a pipe between two points.
Thus
⇒
×
=
× 
⇒
×
×
=
⇒
×
=
× 
⇒
× 110 =
× 
⇒
= 3467 cm / sec
⇒
= 34.67 m / sec
Thus the speed of water flow inside the pipe at point - 2 = 34.67 m / sec
Answer:
It corresponds to 1mm-10 mm range.
Explanation:
- Electromagnetic waves (such as the millimeter-wave radiation) travel at the speed of light, which is 3*10⁸ m/s in free space.
- As in any wave, there exists a fixed relationship between speed, frequency and wavelength, as follows:

- Replacing v= c=3*10⁸ m/s, and the extreme values of f (which are givens), in (1) and solving for λ, we can get the free-space wavelengths that correspond to the 30-300 GHz range, as follows:


Happy Holidays!
We can use the following equation to solve for the gravitational force:

Fg = force due to gravity (N)
G = Gravitational constant
m1,m2 = masses of the objects (kg)
r = distance between the objects (m)
Plug in the given values into the equation:
