Let the distance between the towns be d and the speed of the air be s.
distance = speed * time
convert the minutes time into hours.
When flying into the wind, ground speed will be air speed MINUS wind speed, hence the against the wind trip is described by:
d
s−15
=
7
3
return trip is then :
d
s+15
=
7
5
Cross-multiplying both we get the two-variable system:
3d=7∗(s−15)5d=7∗(s+15)
3d=7s−1055d=7s+105
subtract first equation from second equation we get
2d=210d=105km
Substitute the value of d in the above equations for s.
5∗105=7s+1057s=420s=60km/hr
i believe the answer is 1.5e+6
hope this helps!
Answer:
The canon B hits the ground fast.
Explanation:
Given that,
Speed of cannon A = 85 m/s
Speed of cannon B= 100 m/s
Speed of cannon C = 75 m/s
We need to calculate the cannonballs will hit the ground with the greatest speed
Using conservation of energy
The final kinetic energy of canon depends on initial kinetic energy and potential energy.
The final velocity depends upon initial velocity and initial height.
So, the initial velocity of canon B is high.
Hence, The canon B hits the ground fast.
Answer:
c
Explanation:
betweeb the north american and eurasian planes