Answer:
λ = 102.78 nm
This radiation is in the UV range,
Explanation:
Bohr's atomic model for the hydrogen atom states that the energy is
E = - 13.606 / n²
where 13.606 eV is the ground state energy and n is an integer
an atom transition is the jump of an electron from an initial state to a final state of lesser emergy
ΔE = 13.606 (1 /
- 1 / n_{i}^{2})
the so-called Lyman series occurs when the final state nf = 1, so the second line occurs when ni = 3, let's calculate the energy of the emitted photon
DE = 13.606 (1/1 - 1/3²)
DE = 12.094 eV
let's reduce the energy to the SI system
DE = 12.094 eV (1.6 10⁻¹⁹ J / 1 ev) = 10.35 10⁻¹⁹ J
let's find the wavelength is this energy, let's use Planck's equation to find the frequency
E = h f
f = E / h
f = 19.35 10⁻¹⁹ / 6.63 10⁻³⁴
f = 2.9186 10¹⁵ Hz
now we can look up the wavelength
c = λ f
λ = c / f
λ = 3 10⁸ / 2.9186 10¹⁵
λ = 1.0278 10⁻⁷ m
let's reduce to nm
λ = 102.78 nm
This radiation is in the UV range, which occurs for wavelengths less than 400 nm.
Answer:
Hey!!
Your answer is: 0.72
Explanation:
if 760=1 then...
550=x
=550÷760= 0.72 in two s.f
Answer:
ΔE = 37.8 x 10^9 J
Explanation:
The energy required will increased the potential energy and increase the kinetic energy.
As the altitude change is fairly small compared to the earth radius, we can ASSUME that the average gravity will be a good representative
Gravity acceleration at altitude would be 9.8(6400²/8000²) = 6.272 m/s²
G(avg) = (9.8 + 6.272)/2 = 8.036 m/s²
ΔPE = mG(avg)Δh = 1000(8.036)(8e6 - 6.4e6) = 12.857e9 J
The centripetal force at orbit must be equal to the gravity force
mv²/R = mg'
v²/8.0e6 = 6.272
v² = (6.272(8.0e6)) = 50.2e6 m²/s²
The maximum velocity when resting on earth at the equator is about 460 m/s.
The change in kinetic energy is
ΔKE = ½m(vf² - vi²)(1000)
ΔKE = ½(1000)(50.2e6 - 460²) = 25e9 J
Total energy increase is
25e9 + 12.857e9 = 37.8e9 J
The linear scale is applicable only as it moves in one dimension. From the word "linear" it means it deals with one equation only. Unlike the other options, the dimensions are many because it involves 2 or more variables for its equation.