<h2>
Answer: C) It's a high-pressure zone with sinking air</h2>
Explanation:
The intertropical convergence zone is the region of the terrestrial globe where the trade winds of the northern hemisphere converge with those of the southern hemisphere.
It is characterized by being <u>a belt of low pressure</u> and inconsistent location around the equator constituted by ascending air currents, where large masses of warm and humid air converge from the north and south of the intertropical zone.
The reason of its inconsistent location is due to the movements of the Earth with the seasons, having as a consequence the amount variation of heat energy from the sun in this region.
Answer:
Explanation:
We need the power equation here:
P = W/t where W is work and is defined as
W = F*displacement.
Force is a measure in Newtons, which is also weight. We have the mass of the piano, but we need to find the weight:
w = mg so
w = 166(9.8) so
w = 1600N, rounded to the correct number of sig dig. We use that now in the power equation:
and isolating the unknown:
so
t = 5.3 seconds
<h2>
Answer: 277.777 m</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told that the rock was<u> projected upward from the surface</u>, we will only use the equations related to the Y axis.
In this sense, the movement equations in the Y axis are:
(1)
(2)
Where:
is the rock's final position
is the rock's initial position
is the rock's initial velocity
is the final velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of the moon
As we know
, equation (2) is rewritten as:
(3)
On the other hand, the maximum height is accomplished when
:
(4)
(5)
Finding
:
(6)
Substituting (6) in (3):
(7)
(8) Now we can calculate the maximum height of the rock
(9)
Finally:
energy extracted out of liquids an atoms are left to come closer arrange themselves shorter distance and then they solidify