Answer:
The amount in grams of hydrogen gas produced is 0.551 grams
Explanation:
The parameters given are;
Number of atoms of potassium, aₙ = 3.289 × 10²³ atoms
Chemical equation for the reaction is given as follows;
2K + 2H₂O
KOH + H₂
Avogadro's number,
, regarding the number of molecules or atom per mole is given s follows;
= 6.02 × 10²³ atoms/mole
Therefore;
The number of moles of potassium present = 3.289 × 10²³/(6.02 × 10²³) = 0.546 moles
2 moles of potassium produces one mole of hydrogen gas, therefore;
1 moles of potassium produces 1/2 mole of hydrogen gas, and 0.546 moles of potassium will produce 0.546/2 moles of hydrogen which is 0.273 moles of hydrogen gas
The molar mass of hydrogen gas = 2.016 grams
Therefore, 0.273 moles will have a mass of 0.273×2.016 = 0.551 grams.
The amount in grams of hydrogen gas produced = 0.551 grams.
Answer:
your ans is battery emf v+1r
Answer:
A strip of magnesium metal is ignited using a lighter wand. The result is
an intensely glowing white light. As the burning of the metal subsides, a
white powder-like substance now appears replacing the smooth ribbon of
metal.
Answer:
The pressures will remain at the same value.
Explanation:
A catalyst is a substance that alter the rate of a chemical reaction. It either speeds up the or slows down the rate of a chemical reaction.
While a catalyst affects the rate, it is noteworthy that it has no effect on the equilibrium position of the chemical reaction. A catalyst works by creating an alternative pathway for the reaction to proceed. Most times, it decreases the activation energy needed to kickstart the chemical reaction.
Hence, we know that it has no effect on the equilibrium position. Factors affecting equilibrium position includes, temperature and concentration of reactants and products( pressure in terms of gases).
The reactants and the products here are gaseous, and as such pressure affects the equilibrium position. Now, we have established that the equilibrium position is unaffected. And as such the pressure affecting it does not change.
Thus, we have established that the pressure of the products and reactants are unaffected and as such they remain at their value unaffected.
Actually, there are only about 100 atoms that have been yet discovered. But each element has many different kinds of atom. For instance, carbon. Do you know carbon has more than 30 or 50 different types of atoms? Well, how? There are isotopes. Don't think that there is only one carbon atom which has 6 electrons and 6 protons and 6 neutrons. There are more. C-13 has 6 electrons and 6 protons and 7 neutrons. While, C-14 has 6 electrons and 6 protons and 8 neutrons. I just showed you three stable isotopes of carbon(element). But, what is really an isotope?? Did you notice that all of these atoms had the same number of protons and electron but different numbers of neutrons? This is really an isotope. Well, if an atom takes a few more electrons or gives off a few electrons, it still stays the same element/ atom type. Just like that an element can have atoms of different neutron number. It may be less or more. It doesn't affect the atom much: just makes an isotope. But it does affect the atomic mass number or radioactivity of an atom. So, an element can have many different forms of isotopes of its atoms. In this way, being only 100 atoms, there can 1000 atoms or (more than that!).
To make it more clear-
Definition of ISOTOPE: <span>any of two or more forms of a </span>chemical<span> element, having the same number of protons and electrons in the nucleus, or the same atomic number, but having different numbers of neutrons</span>
HOPE YOU UNDERSTOOD THE MATTER:-))