Answer:
<I= 15degrees
Step-by-step explanation:
Using the cosine rule formulae;
j² = i²+k²-2i cos <J
j² = 37²+57² - 2(37)(57)cos <141
j² = 1369+ 3249- 4218cos <141
j² = 4618- 4218cos <141
j² = 4618-(-3,278)
j²= 7,896
j = √7,896
j = 88.86inches
Next is to get <I
i² = j²+k²-2jk cos <I
37² = 88.86²+57² - 2(88.86)(57)cos <I
1369 = 7,896.0996+ 3249- 10,130.04cos <I
1369 = 11,145.0996 - 10,130.04cos <I
1369 - 11,145.0996 = - 10,130.04cos <I
-9,776.0996=- 10,130.04cos <I
cos <I =9,776.0996 /10,130.04
cos<I = 0.96506
<I = 15.19
<I= 15degrees
If you would like to solve the system of equations, you can do this using the following steps:
5p - 3r = 1 /*2
8p + 6r = 4
__________
10p - 6r = 2
<span>8p + 6r = 4
</span>__________
10p - 6r + 8p + 6r = 2 + 4
18p = 6
p = 6/18
p = 1/3
<span>5p - 3r = 1
</span>5 * 1/3 - 3r = 1
5/3 - 3r = 1
5/3 - 1 = 3r
5/3 - 3/3 = 3r
2/3 = 3r
r = 2/9
(p, r) = (1/3, 2/9)
The correct result would be <span>(1/3, 2/9)</span>.
16387412467582039-=0538769434203-13=2=3918427356492401-98573
so .; it is 3
Answer: 70s - 70
Step-by-step explanation: