N
W E
S
Paula has gone 1 km east as the total displacement. The total distance would be 7 km. Why? Well, the difference between displacement and distance is displacement is directional which is why it’s included in velocity and not speed. However, distance is more broad and not as specific.
Answer:
A: the intensity
Explanation:
the closer the sound, the more intense it is. Think about the ambulance illustration in your text book (assuming you are using a physics textbook) : )
A magnetic field is actually generated by a moving current (or moving electric charge specifically). The magnetic field generated by a moving current can be found by using the right hand rule, point your right thumb in the direction of current flow, then the wrap of your fingers will tell you what direction the magnetic field is. In the case of current traveling up a wire, the magnetic field generated will encircle the wire. Similarly electromagnets work by having a wire coil, and causing current to spin in a circle, generating a magnetic field perpendicular to the current flow (again right hand rule).
So if you were to take a permenant magnet and cut a hole in it then string a straight wire through it... my guess is nothing too interesting would happen. The two different magnetic fields might ineteract in a peculiar way, but nothing too fascinating, perhaps if you give me more context as to what you might think would happen or what made you come up with this question I could help.
Source: Bachelor's degree in Physics.
Answer:
1. E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Explanation:
According to the problem, Q is the charge on the non conducting sphere of radius R. Let ρ be the volume charge density of the non conducting sphere.
As shown in the figure, let r be the radius of the sphere inside the bigger non conducting sphere. Hence, the charge on the sphere of radius r is :
Q₁ = ∫ ρ dV
Here dV is the volume element of sphere of radius r.
Q₁ = ρ x 4π x ∫ r² dr
The limit of integration is from 0 to r as r is less than R.
Q₁ = (4π x ρ x r³ )/3
But volume charge density, ρ = 
So, 
Applying Gauss law of electrostatics ;
∫ E ds = Q₁/ε₀
Here E is electric field inside the sphere and ds is surface element of sphere of radius r.
Substitute the value of Q₁ in the above equation. Hence,
E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Answer:
The acceleration is about 9.8 m/s2 (down) when the ball is falling.
Explanation:
The ball at maximum height has velocity zero
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s² (positive downward and negative upward)

The accleration 9.8 m/s² will always be acting on the body in opposite direction when the body is going up and in the same direction when the body is going down. The acceleration on the body will never be zero