Answer:
1. The planet doesn't have a thick enough atmosphere.
2. There have been multiple impacts on the planet.
Explanation:
As the planet is very close to the star, there is high possibility that it will not have an atmosphere. Just like Mercury doesn't have one. Presence of a very large crater with basin indicates that in the past a huge body had hit the planet and thus creating the crater with basin. Also, it must be very old.
Second observation that is given is the presence of smaller craters in the basin. This indicates impact craters created by smaller objects. If the planet had an atmosphere, these smaller objects would not be able to penetrate and reach the surface. Thus presence of these smaller crater indicate towards the planet not having any atmosphere.
Very Long Baseline Interferometry (VLBI) is a technique being used by the United States Naval Observatory (USNO) to determine the reference frames for stars and the Earth, and to predict the variable orientation of the Earth in three-dimensional space.
Hope this helps
Don't forget to rate and thank me
Answer: In the planet there is life and the star is a store of energy where the planet gets its light, life and energy.
Explanation:
Answer: Option (C)
Explanation: Rock cycle plays an important role in the alteration of rocks from one form to another.
- Igneous rocks when undergoes high temperature and pressure condition, it transforms into a metamorphic rock.
- Sedimentary rocks are formed from the sedimentation and consolidation of sediments
- Igneous rocks are formed due to the crystallization of magma.
Hence the correct answer is option (C)
Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j