(a) Period of the wave
The period of a wave is the time needed for a complete cycle of the wave to pass through a certain point.
So, if an entire cycle of the wave passes through the given location in 5.0 seconds, this means that the period is equal to 5.0 s: T=5.0 s.
(b) Frequency of the wave
The frequency of a wave is defined as

since in our problem the period is

, the frequency is

(c) Speed of the wave
The speed of a wave is given by the following relationship between frequency f and wavelength

:
Answer:
24.084 m/s
Explanation:
From the law of conservation of linear momentum
Total momentum before collision equals to the total momentum after collision
Since momentum=mv where m is mass and v is velocity
where
is the mass of the truck,
is velocity of the truck,
is the common velocity of moving and standing truck after collision and
is the mass of the standing truck
Making
the subject we obtain
Substituting
as 25000 Kg,
as 22.3 m/s,
as 2000 Kg we obtain
Therefore, assuming no friction and considering that after collision they still move eastwards hence common velocity and initial truck velocities are positive
The truck was moving at 24.084 m/s
Answer: over burden is dissolved by water wind and acids
Answer:
a)θ=71.89°
b)NO
Explanation:
Given that
For glass n= 1.38
We know that for air n'=1
The angle for total internal reflection θc given as
sin θc=n'/n
By putting the values
sin θc=n'/n
sin θc=1/1.38
θc=46.43°
n'sinθ = n sinθref
sinθref = cosθc
n'sinθ = n cosθc
1 x sinθ =1.38 x cos 46.43°
θ=71.89°
b)
NO
It would be: 40 + 272 = 313 K
In short, Your Answer would be Option A
Hope this helps!