To get the molecules contained in liquid ethanol, we multiply the density to the given volume, that is equal to 0.789 g ethanol. In this case, we divide by molar mass and multiply by the constant, Avogadro's number. The answer is 1.033 x 10^22 molecules.
Answer:
1335.12 mL of H2O
Explanation:
To calculate the mililiters of water that the solution needs, it is necessary to know that the volume of the solution is equal to the volume of the solute (NaOH) plus the volume of the solvent (H2O).
From the molarity formula we can first calculate the volume of the solution:


The volume of the solution as we said previously is:
Solution volume = solute volume + solvent volume
To determine the volume of the solute we first obtain the grams of NaOH through the molecular weight formula:


Now with the density of NaOH the milliliters of solute can be determined:


Having the volume of the solution and the volume of the solute, the volume of the solvent H2O can be calculated:
Solvent volume = solution volume - solute volume
Solvent volume = 1429 mL - 93.88 mL = 1335.12 mL of H2O
<h2>Answer:</h2>
<u>Yes the statement is</u><u> True</u>
<h2>Explanation:</h2>
THC is a chemical which stands for delta-9-tetrahydrocannibinol or Δ-9-tetrahydrocannabinol (Δ-9-THC). This chemical is a cannabinoid molecule in marijuana or cannabis that has long been known as the main psychoactive ingredient in marijuana which means that it is the substance that causes users to experience the marijuana high. It can be detected in the blood up to 20 hours after ingestion, and it's stored in the body fat and organs for three to four weeks after ingestion.