Answer:
28.43 min
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k =
min⁻¹
Initial concentration
= 0.1 M
Final concentration
=
M
Time = ?
Applying in the above equation, we get that:-




So it would be the complimentary base pairing, meaning that the codon must have been:
GAC
(Which is the codon for aspartic acid)
"equal to"
1=1
1 is equal to 1
Is this what you mean?
Answer:
The answer to your question is Gallium-71 = 70.9202 amu
Explanation:
Gallium atomic weight = 69.7
Gallium-69 = 68.9 amu abundance = 60.4%
Gallium-71 = x abundance = 39.6%
To solve this problem just write an equation and solve it for the mass of gallium-71.
Equation
Gallium = Gallium-69(abundance) + Gallium-71(abundance)
Substitution
69.7 = (68.9)(0.604) + Gallium-71(0.396)
69.7 = 41.6156 + Gallium-71(0.396)
Gallium-71(0.396) = 69.7 - 41.6156
Gallium-71(0.396) = 28.0844
Gallium-71 = 28.0844/0.396
Gallium-71 = 70.9202 amu