The correct choice is B.
Mixtures retain their properties because science has proven it. Take a bag of trail mix for example. Those raisins and marshmallows and m&m’s can each be separated. When you take them out, they keep their same texture.
Is not correct because mixtures can be solids (Trail mix is one example)
Correct
Is not correct because sometimes it cannot be seen (Lemonade powder and water is one example)
Is not correct because trail mix is an example.
Answer:
ΔE = 150 J
Explanation:
From first law of thermodynamics, we know that;
ΔE = q + w
Where;
ΔE is change in internal energy
q is total amount of heat energy going in or coming out
w is total amount of work expended or received
From the question, the system receives 575 J of heat. Thus, q = +575 J
Also, we are told that the system delivered 425 J of work. Thus, w = -425 J since work was expended.
Thus;
ΔE = 575 + (-425)
ΔE = 575 - 425
ΔE = 150 J
Answer:
5400 cans
Explanation:
First we convert the total weight, 1 ton, to grams:

Now we need to know the mass of aluminum:

Now we make the relation between the mass of aluminum in 1 ton of the earth's crust and the mass of aluminum per can:

It will belong to the metals because metals bond with nonmetals like chlorine to form ionic compounds
Answer:
4.8 %
Explanation:
We are asked the concentration in % by mass, given the molarity of the solution and its density.
0.8 molar solution means that we have 0.80 moles of acetic acid in 1 liter of solution. If we convert the moles of acetic acid to grams, and the 1 liter solution to grams, since we are given the density of solution, we will have the values necessary to calculate the % by mass:
MW acetic acid = 60.0 g/mol
mass acetic acid (the solute) = 0.80 mol x 60 g / mol = 48.00 g
mass of solution = 1000 cm³ x 1.010 g/ cm³ (1l= 1000 cm³)
= 1010 g
% (by mass) = 48.00 g/ 1010 g x 100 = 4.8 %