Answer:
a= -0.86 m/s²
The negative sign shows that ball down the ground or moving down
Explanation:
Vf² - Vo² = 2gS
where
Vf = velocity of clay as it hits the ground
Vo = initial velocity of clay = 0
g = acceleration due to gravity = 9.8 m/sec^2 (constant)
S = distance travelled by clay = 15 m
Substituting appropriate values,
Vf² - 0 = 2(9.8)(15)
Vf = 17.15 m/sec.
Formula to use is,
V - Vf = aT
where
V = velocity of clay when it stops = 0
Vf = 17.15 m/sec (as determined above)
a = acceleration
T = 20 ms
Put the values to find acceleration
a=(V-Vf)/T
a=(0-17.15)/20
a= -0.86 m/s²
The negative sign shows that ball down the ground
Answer:
T = 712.9 N
Explanation:
First, we will find the speed of the wave:
v = fλ
where,
v = speed of the wave = ?
f = frequency = 890 Hz
λ = wavelength = 0.1 m
Therefore,
v = (890 Hz)(0.1 m)
v = 89 m/s
Now, we will find the linear mass density of the wire:

where,
μ = linear mass density of wie = ?
m = mass of wire = 90 g = 0.09 kg
L = length of wire = 1 m
Therefore,

μ = 0.09 kg/m
Now, the tension in wire (T) will be:
T = μv² = (0.09 kg/m)(89 m/s)²
<u>T = 712.9 N</u>
Answer:
t = 4.17 [s]
Explanation:
We know that work is defined as the product of force by distance.
W = F*d
where:
F = force [N] (units of Newtons)
d = distance = 6.34 x 10⁴ [mm] = 63.4 [m]
In order to find the force, we must determine the weight of the box, the weight can be determined by means of the product of mass by gravitational acceleration.
w = m*g
where:
m = mass = 1.47 x 10⁴ [g] = 14.7 [kg]
g = gravity acceleration = 9.81 [m/s²]
w = 14.7*9.81
w = 144.2 [N]
Therefore the work can be calculated.
W = w*d
W = 144.2*63.4
W = 9142.72 [J] (units of Joules)
Power is now defined in physics as the relationship of work at a given time
P = W/t
where:
P = power = 2190 [W]
t = time [s]
Now clearing t, we have.
t = W/P
t = 9142.72/2190
t = 4.17 [s]
Answer:
Milimeters
Explanation:
This kind of question must be checked with everyday elements, in this way we will analyze each of the options until we reach the appropriate:
kilograms can not be because this unit serves to measure the mass not the length.
kilometers (km) is a unit of length, but however it does not serve for this measurement since a km is equivalent to 1000 meters, therefore measuring the length of a shoe with a ruler measuring 1000 meters is very impractical.
milliliters is a unit of volume, and can often be found in the measurement of volume content of liquids, for example 700 milliliters of milk or 1000 milliliters of water. Therefore it is impractical to measure a shoe with a unit of volume.
In this way the way to measure a shoe correctly is using a ruler or measuring instrument graduated in millimeters.