Runner 2 sees Runner 1 passing him with a velocity of 17 m/s west.
Is the production of electricity by magnetic field.
There are two types of generator which is <u>D</u><u>.</u><u>C</u><u> </u>generator . And A.C <em>g</em><em>e</em><em>n</em><em>e</em><em>r</em><em>a</em><em>t</em><em>o</em><em>r</em>
A.C gen consist of rectangular coil,brushes and permanent magnet
According to the external force mechanical energy used to rotate coil, due to magnetic flux produced by permanent magnet create induced current, this is to according to flemmings right hand rule of electromagnetic induction the rotating coil will produce current
I hope that will help.
Answer:

Explanation:
We know that acceleration is change in velocity over time.


v is the final velocity and u is the initial velocity.
Solve for v.
Multiply both sides by t.

Add u to both sides.

The relationship between the distance covered, initial and final speeds, and time can be expressed through the equation,
First equation,
2ad = Vf² - Vi²
Substituting the known values,
2(a)(0.230 km) = (70 km/h)² - (40 km/h)²
The value of a from the equation is 7173.92 km/h².
Second equation,
d = (Vi)(t) + 0.5at²
Substituting the known values,
0.230 km = (40 km/h)(t) + (0.5)(7173.92 km/h²)(t²)
The value of t from the equation is 4.1818 x 10^-3 hours which is also equal to 0.2509 minutes or 15 seconds.
Answer: 15 seconds
In order to compute the final velocity of the trains, we may apply the principle of conservation of momentum which is:
initial momentum = final momentum
m₁v₁ = m₂v₂
The final mass of the trains will be:
10,000 + 10,000 = 20,000 kg
Substituting the values into the equation:
10,000 * 3 = 20,000 * v
v = 1.5 m/s
The final velocity of the trains will be 1.5 m/s