Answer: 1010.92 m/s
Explanation:
According to Newton's law of universal gravitation:
(1)
Where:
is the gravitational force between Earth and Moon
is the Gravitational Constant
is the mass of the Earth
is the mass of the Moon
is the distance between the Earth and Moon
Asuming the orbit of the Moon around the Earth is a circular orbit, the Earth exerts a centripetal force on the moon, which is equal to :
(2)
Where is the centripetal acceleration given by:
(3)
Being the orbital velocity of the moon
Making (1)=(2):
(4)
Simplifying:
(5)
Making (5)=(3):
(6)
Finding :
(7)
(8)
Finally:
Answer:
5295.3 N
Explanation:
According to law of momentum conservation, the change in momentum of the ball shall be from the momentum generated by the batter force
mv + P = mV
P = mV - mv = m(V - v)
Since the velocity of the ball before and after is in opposite direction, one of them is negative
P = 0.14(44.8 - (-19.5)) = 9 kg m/s
Hence the force exerted to generate such momentum within 1.7ms (0.0017s) is
F = P/t = 9/0.0017 = 5295.3 N
<h2>
The seagull's approximate height above the ground at the time the clam was dropped is 4 m</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 3 s
Substituting
s = ut + 0.5 at²
s = 0 x 3 + 0.5 x 9.81 x 3²
s = 44.145 m
The seagull's approximate height above the ground at the time the clam was dropped is 4 m
Answer:
8.5 Ω
Explanation:
La resistencia de un material es directamente proporcional a su longitud e inversamente proporcional al área de la sección transversal.
La fórmula de la resistencia (R) viene dada por:
R = ρL/A
Donde ρ es la resistividad del material, L es la longitud del material y A es el área de la sección transversal del material.
Dado que:
L = 1 km = 1000 m, A = 2 mm² = 2 * 10⁻⁶ m², ρ (cobre) = 1.7 * 10⁻⁸ Ωm
Sustituyendo da:
R = 1,7 * 10⁻⁸ * 1000/2 * 10⁻⁶
R = 8.5 Ω