Answer
Given,
refractive index of film, n = 1.6
refractive index of air, n' = 1
angle of incidence, i = 35°
angle of refraction, r = ?
Using Snell's law
n' sin i = n sin r
1 x sin 35° = 1.6 x sin r
r = 21°
Angle of refraction is equal to 21°.
Now,
distance at which refractive angle comes out
d = 2.5 mm
α be the angle with horizontal surface and incident ray.
α = 90°-21° = 69°
t be the thickness of the film.
So,


t = 2.26 mm
Hence, the thickness of the film is equal to 2.26 mm.
<u>Answer:</u>
The modern atomic theory has given by "John Dalton and framed postulates".
<u>Explanation:</u>
The fundamental role of atoms in chemistry is established by the modern theory of atoms mentioned in 1808 for the first time by an English scientist named John Dalton. This consists of three sections such as all matter is composed of atoms, atoms of the same element are the same while atoms of different elements are different, atoms combine to form compounds in full-number ratios.
The unique characteristic of the "number of protons" is that all atoms of the same compound share. While the atoms of the same element i.e having a similar number of protons can have different numbers of neutrons and such elements are called isotopes.
We can solve for the acceleration by using a kinematic equation. First we should identify what we know so we can choose the correct equation.
We are given an original velocity of 24 m/s, a final velocity of 0 m/s, and a time of 6 s. We and looking for acceleration (a) in m/s^2.
The following equation has everything we need:

So plug in the known values and solve for a:
0 = 24 + 6a
-24 = 6a
a = -4 m/s^2