<span><u><em>Answer:</em></u>
combustion reaction
<u><em>Explanation:</em></u>
In chemistry, a <u>combustion reaction</u> is defined as a reaction between an oxidant and any compound that leads to the production of another compound along with a huge amount of heat.
<u>Now, let's check the reaction given:</u>
C</span>₃H₈<span> + 5 O</span>₂<span> --> 3 CO</span>₂<span> + 4 H</span>₂O<span>
<u>The oxidant</u> is oxygen gas
<u>The compound reacting</u> is propane
<u>The compound produced</u> is carbon dioxide along with water vapor and heat
Therefore, the given reaction is a combustion reaction
Hope this helps :)</span>
Answer:
Molarity = 0.21 M
Explanation:
Moles <em>solute </em>(mol) = Volume <em>solution</em> (L) x Molarity <em>solution </em>(M)
0.56 mol NaCl = 2.7 L x M
M = 0.2074074074
Answer :
(A) The rate expression will be:
![Rate=-\frac{1}{2}\frac{d[HBr]}{dt}=+\frac{d[H_2]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
(B) The average rate of the reaction during this time interval is, 0.00176 M/s
(C) The amount of Br₂ (in moles) formed is, 0.0396 mol
Explanation :
Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The given rate of reaction is,

The expression for rate of reaction :
![\text{Rate of disappearance of }HBr=-\frac{1}{2}\frac{d[HBr]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DHBr%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }H_2=+\frac{d[H_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DH_2%3D%2B%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D)
![\text{Rate of formation of }Br_2=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DBr_2%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
<u>Part A:</u>
The rate expression will be:
![Rate=-\frac{1}{2}\frac{d[HBr]}{dt}=+\frac{d[H_2]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
<u>Part B:</u>
![\text{Average rate}=-\frac{1}{2}\frac{d[HBr]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20rate%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D)


The average rate of the reaction during this time interval is, 0.00176 M/s
<u>Part C:</u>
As we are given that the volume of the reaction vessel is 1.50 L.
![\frac{d[Br_2]}{dt}=0.00176M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D0.00176M%2Fs)
![\frac{d[Br_2]}{15.0s}=0.00176M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7B15.0s%7D%3D0.00176M%2Fs)
![[Br_2]=0.00176M/s\times 15.0s](https://tex.z-dn.net/?f=%5BBr_2%5D%3D0.00176M%2Fs%5Ctimes%2015.0s)
![[Br_2]=0.0264M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D0.0264M)
Now we have to determine the amount of Br₂ (in moles).



The amount of Br₂ (in moles) formed is, 0.0396 mol
1. Elements are composed of atoms that are indestructible
2. All atoms of a given element are identical; same size/mass/chemical properties
3. Atoms of 1 element are different from the atoms of other elements
4. Compounds are composed of atoms with more than 1 element. The relative number of atoms for each element are of a given compound are always going to be the same.
(Extra one) 5. Chemical reactions are only ever going involve the rearrangement of the atoms. Atoms are not created/destroyed during the chemical reactions. (Law of Conservation of Mass: nothing can ever be created or destroyed.)