Answer:
Explanation:
Volume is defined as the space occupied by an object or substance irrespective of its state of matter.The conversion used from millimeter to liter is:
1 milliiliter = 0.001 L
Therefore, we can convert the volume of sample from 2.5 ml in liters as follows.
2.5 ml in liters = 2.5ml x 0.001 L/1ml
= 0.0025 L
Thus, we can conclude that the volume of given sample in liter is 0.0025 L
Hope this helps! :)
Answer is: 2. atomic number.
Atomic number is unique and defines an element. Atomic number (Z) is total number of protons in an atom.
For example, nitrogen atom (N-14) has 7 protons (p⁺), 7 electrons (e⁻) and 7 neutrons (n°). Protons (positive charge) and neutrons are in the nucleus of atom, electrons (negative charge) are bound to the nucleus in spherical shells. Nitrogen is an element with atomic number 7. Mass number (A) is the total number of protons and neutrons in a nucleus. Nitrogen mass number is 14 (A = p⁺ + n°; A = 14).
The volume (in liters) that the gas will occupy if the pressure is increased to 13.5 atm and the temperature is decreased to 15 °C is 15 L
From the question given above, the following data were obtained:
Initial pressure (P₁) = 8.5 atm
Initial volume (V₁) = 24 L
Initial temperature (T₁) = 25 °C = 25 + 273 = 298 K
Final pressure (P₂) = 13.5 atm
Final temperature (T₂) = 15 °C = 15 + 273 = 288 K
<h3>Final volume (V₂) =? </h3>
- The final volume of the gas can be obtained by using the combined gas equation as illustrated below:
Cross multiply
298 × 13.5 × V₂ = 204 × 288
4023 × V₂ = 58752
Divide both side by 4023
<h3>V₂ = 15 L </h3>
Therefore, the final volume of the gas is 15 L
Learn more: brainly.com/question/25547148
Answer:
C3 H6 O2
Explanation:
first divide their mass by their respective molar mass, we get:
30.4 moles of C
61.2 moles of H
20.25 moles of O
now divide everyone by the smallest one of them then we get
C= 1.5
H= 3
O= 1
since our answer of C is not near to any whole number so we will multiply all of them by 2
so,
C3 H6 O2 is our answer
Answer: 373 mL
Explanation:
Since there is no change in pressure, the formula: V / T = V / T can be used.
However, you must first convert the temperatures to Kelvin by adding 273 to them:
(19 + 273) = 292K and (90 + 273) = 363K.
Now, plug in: V / 292 = 464 / 363 → V = 373 mL :)