Here’s all of them: kingdom, phylum, classes, order, families, genus, and species
Answer:
Explanation:
A. The charge on an element is determined by the differences between the number of protons and electrons in an atom.
An atom will have no charges if the number of protons and electrons are the same.
- When an atom loses or gains electrons, the number of electrons will either decrease or increase
- if the number of electrons is more than the number of protons, the excess electrons is the charge on the atom. And this makes the atom become a negatively charged ion.
- if the number of electrons is lesser than the number of protons, the deficient electrons makes the atom a positively charged ion. The number of electrons by which the atom is deficient makes the atom a positively charged ion.
Charge = number of protons - number of electrons
B. Electrons form the charges they do because with the charge, they become stable like the noble gases.
The desire of every atom is to have stable electronic configuration like those of the noble gases.
A potassium atom with a configuration 2 8 8 1 will prefer to lose an electron to become an Argon atom making the ion stable.
Answer:
C₄H₁₀O + 6O₂ ⇒ 4CO₂ + 5H₂O
Explanation:
Match the amount of reactants and products on both sides of the equation.
Answer:
The system is not in equilibrium and will evolve left to right to reach equilibrium.
Explanation:
The reaction quotient Qc is defined for a generic reaction:
aA + bB → cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where the concentrations are not those of equilibrium, but other given concentrations
Chemical Equilibrium is the state in which the direct and indirect reaction have the same speed and is represented by a constant Kc, which for a generic reaction as shown above, is defined:
![Kc=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where the concentrations are those of equilibrium.
This constant is equal to the multiplication of the concentrations of the products raised to their stoichiometric coefficients divided by the multiplication of the concentrations of the reactants also raised to their stoichiometric coefficients.
Comparing Qc with Kc allows to find out the status and evolution of the system:
- If the reaction quotient is equal to the equilibrium constant, Qc = Kc, the system has reached chemical equilibrium.
- If the reaction quotient is greater than the equilibrium constant, Qc> Kc, the system is not in equilibrium. In this case the direct reaction predominates and there will be more product present than what is obtained at equilibrium. Therefore, this product is used to promote the reverse reaction and reach equilibrium. The system will then evolve to the left to increase the reagent concentration.
- If the reaction quotient is less than the equilibrium constant, Qc <Kc, the system is not in equilibrium. The concentration of the reagents is higher than it would be at equilibrium, so the direct reaction predominates. Thus, the system will evolve to the right to increase the concentration of products.
In this case:
![Q=\frac{[So_{3}] ^{2} }{[SO_{2} ]^{2}* [O_{2}] }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BSo_%7B3%7D%5D%20%5E%7B2%7D%20%7D%7B%5BSO_%7B2%7D%20%5D%5E%7B2%7D%2A%20%5BO_%7B2%7D%5D%20%7D)

Q=100,000
100,000 < 4,300,000 (4.3*10⁶)
Q < Kc
<u><em>
The system is not in equilibrium and will evolve left to right to reach equilibrium.</em></u>