Answer:
m = 3 moles/kg
Explanation:
This is a problem of freezing point depression, and the formula or expression to use is the following:
ΔT = i*Kf¨*m (1)
Where:
ΔT: Change of temperature of the solution
i: Van't Hoff factor
m: molality of solution
Kf: molal freezing point depression of water (Kf = 1.86 °C kg/mol)
Now, the value of i is the number of moles of particles obtained when 1 mol of a solute dissolves. In this case, we do not know what kind of solution is, so, we can assume this is a non electrolyte solute, and the value of i = 1.
Let's calculate the value m, which is the molality solving for (1):
m = ΔT/Kf (2)
Finally, let's calculate ΔT:
ΔT = T2 - T1
ΔT = 0 - (-5.58)
ΔT = 5.58 °C
Now, let's replace in (2):
m = 5.58/1.86
<em>m = 3 moles/kg</em>
<em>This is the molality of solution.</em>
<em>The other data of mass, can be used to calculate the molecular mass of this unknown solid, but it's not asked in the question.</em>
8.03 solutions report is described below.
Explanation:
8.03 Solutions Lab Report
In this laboratory activity, you will investigate how temperature, agitation, particle size, and dilution affect the taste of a drink. Fill in each section of this lab report and submit it and your pre-lab answers to your instructor for grading.
Pre-lab Questions:
In this lab, you will make fruit drinks with powdered drink mix. Complete the pre-lab questions to get the values you need for your drink solutions.
Calculate the molar mass of powered fruit drink mix, made from sucrose (C12H22O11).
Using stoichiometry, determine the mass of powdered drink mix needed to make a 1.0 M solution of 100 mL.
You could use another word for change can be variable witch means change and if you times the one two more times then you would get four because two time two would be four and times the one would be four.
The answer is B mark me as Brainliest while your at it