Answer:
The answer is the 3rd option!
Answer:
(a) 4.27 x 10^-4 Telsa
(b) 3.28 x 10^-4 Telsa
Explanation:
side of square, a = 5.49 cm
inner radius, r = 18.1 cm = 0.181 m
number of turns,N = 450
current, i = 0.859 A
(a)
The magnetic field due to a solenoid due to inner radius is


B = 4.27 x 10^-4 Telsa
(b)
The outer radius is R = 18.1 + 5.49 = 23.59 cm = 0.236 m
The magnetic field due to the outer radius is


B = 3.28 x 10^-4 Tesla
a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.
Answer:
100 V
Explanation:
Hi there!
Ohm's law states that
where V is the voltage, I is the current and R is the resistance.
Plug the given information into Ohm's law (R=50, I=A)

Therefore, the voltage across this current is 100 V.
I hope this helps!
Answer:We have , a relation in frequency f and wavelength λ of a wave having the velocity v as ,
v=fλ ,
given f=60Hz , λ=20m ,
therefore velocity of wave , v=60×20=1200m/s