The answer is electricity
Answer:
The beat frequency is 30 Hz
Explanation:
Given;
velocity of the two sound waves, v = 343 m/s
wavelength of the first wave, λ₁ = 5.72 m
wavelength of the second wave, λ₂ = 11.44 m
The frequency of the first wave is calculated as follows;
F₁ = v/λ₁
F₁ = 343 / 5.72
F₁ = 59.97 HZ
The frequency of the second wave is calculated as follows;
F₂ = v/λ₂
F₂ = 343 / 11.44
F₂ = 29.98 Hz
The beat frequency is calculated as;
Fb = F₁ - F₂
Fb = 59.97 HZ - 29.98 Hz
Fb = 30 Hz
9.8m per seccond is the speed of gravity if you drop something like a ball from a tower
V = t^2 - 9t + 18
position, s
s = t^3 /3 - 4.5t^2 +18t + C
t = 0, s = 1 => 1=C => s = t^3/3 -4.5t^2 + 18t + 1
Average velocity: distance / time
distance: t = 8 => s = 8^3 / 3 - 4.5 (8)^2 + 18(8) + 1 = 27.67 m
Average velocity = 27.67 / 8 = 3.46 m/s
t = 5 s
v = t^2 - 9t + 18 = 5^2 - 9(5) + 18 = -2 m/s
speed = |-2| m/s = 2 m/s
Moving right
V > 0 => t^2 - 9t + 18 > 0
(t - 6)(t - 3) > 0
=> t > 6 and t > 3 => t > 6 s => Interval (6,8)
=> t < 6 and t <3 => t <3 s => interval (0,3)
Going faster and slowing dowm
acceleration, a = v' = 2t - 9
a > 0 => 2t - 9 > 0 => 2t > 9 => t > 4.5 s
Then, going faster in the interval (4.5 , 8) and slowing down in (0, 4.5)
Answer:
250N
Explanation:
Given parameters:
Time = 4s
Momentum = 1000kgm/s
Unknown:
Force = ?
Solution:
To solve this problem, we use Newton's second law of motion;
Ft = Momentum
F is the force
t is the time
So;
F x 4 = 1000kgm/s
F = 250N