The correct answer is D.
Increasing the pressure shifts the position of equilibrium towards the side with fewer gas molecules.
The ring shape of the Cartwheel Galaxy is due to collisions with another galaxy.
<h3>What causes the ring shape of the Cartwheel Galaxy?</h3>
The unusual shape of the Cartwheel Galaxy is due to a collision with a smaller galaxy. The recent star burst has lighted up the Cartwheel rim which has a diameter larger than that of the Milky Way galaxy in which our planet exists. The Cartwheel Galaxy is a lenticular ring galaxy which is about 500 million light-years away. This galaxy was discovered by Fritz Zwicky in the year 1941.
So we can conclude that the ring shape of the Cartwheel Galaxy is due to collisions with another galaxy.
Learn more about galaxy here: brainly.com/question/13956361
#SPJ1
A) At 0 C water forms ice but as mentioned above F) water's greatest density occurs at 4 C and it decreases below 4 C so ice is lighter than 4C water, thus, at 0C ice comes to surface and acts as insulator thereby preventing lower water from freezing.
Answer:

Explanation:
Any gas at standard temperature and pressure (STP) has a volume of 22.4 liters per mole or 22.4 L/mol. We can create a proportion with this value.

Multiply both sides of the equation by 6.8 moles of krypton.

The units of moles of krypton will cancel.

The denominator of 1 can be ignored, so this becomes a simple multiplication problem.


If we round to the nearest whole number, the 3 in the tenths place tells us to leave the 2 in the ones place.

6.8 moles of krypton gas at standard temperature and pressure is equal to <u>152 liters</u>.
It’s really any metal because metals form metallic bonds. They are the only substances which can make metallic bonds. So the answer is A