Answer: option D) energy was absorbed and entropy increased.
Explanation:
1) Given balanced equation:
2H₂O (l) + 571.6 kJ → 2 H₂ (g) + O₂(g).
2) Being the energy placed on the side of the reactants means that the energy is used (consumed or absorbed). This is an endothermic reaction.
So, the first part is that energy was absorbed.
3) As for the entropy, it is a measure of the disorder or radomness of the system.
Since, two molecules of liquid water were transformed into three molecules of gas, i.e. more molecules and more kinetic energy, therefore the new state has a greater degree of radomness, is more disordered, and you conclude that the entropy increased.
With that, you have shown that the right option is D) energy was absorbed and increased.
<u>Answer:</u> The temperature at which the food will cook is 219.14°C
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Converting the temperature from kelvins to degree Celsius, by using the conversion factor:


Hence, the temperature at which the food will cook is 219.14°C
<u>Answer:</u> The molarity of barium hydroxide solution is 0.118 M.
<u>Explanation:</u>
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is 
We are given:

Putting values in above equation, we get:

Hence, the molarity of
solution will be 0.118 M.
The three isomers of pentane have different structural formulas.
Aluminum is an element. If there's nothing else in the foil
besides aluminum, then the foil is entirely an element.