Answer:
It is A. Because charged particles of solar wind ignite different gases in Earth's atmosphere.
Explanation:
Since the solar wind from the sun is too radioactive for humans (they would die), once the charged particles hit the earth's atmosphere it shows its color. Every element has its own color and once it hits the atmosphere it really starts to show.
Wavelength of the light is 2.9 × 10⁻⁷ m.
<u>Explanation:</u>
Planck - Einstein equation shows the relationship between the energy of a photon and its frequency, and they are directly proportional to each other and it is given by the equation as E = hν,
where E is the energy of the photon
h is the Planck's constant = 6.626 × 10⁻³⁴ J s
ν is the frequency
From the above equation, we can find the frequency by rearranging the equation as,
ν =
= 
Now the frequency and the wavelength are in inverse relationship with each other.
ν × λ = c
It can be rearranged to get λ as,
λ = c / ν
= 
So wavelength is 2.9 × 10⁻⁷ m.
The activity of the sample when it was shipped from the manufacturer is 4.54 mCi
<h3>How to determine the number of half-lives that has elapsed </h3>
From the question given above, the following data were obtained:
- Time (t) = 48 hours
- Half-life (t½) = 14.28 days = 14.28 × 24 = 342.72 hours
- Number of half-lives (n) =?
n = t / t½
n = 48 / 342.72
n = 0.14
<h3>How to determine the activity of the sample during shipping </h3>
- Number of half-lives (n) = 0.14
- Original activity (N₀) = 5.0 mCi
- Activity remaining (N) =?
N = N₀ / 2ⁿ
N = 5 / 2^0.14
N = 4.54 mCi
Thus, the activity of the sample during shipping is 4.54 mCi
Learn more about half life:
brainly.com/question/2674699
Answer:
The final temperature at 1050 mmHg is 134.57
or 407.57 Kelvin.
Explanation:
Initial temperature = T = 55
= 328 K
Initial pressure = P = 845 mmHg
Assuming final to be temperature to be T' Kelvin
Final Pressure = P' = 1050 mmHg
The final temperature is obtained by following relation at constant volume

The final temperature is 407.57 K
NaBrO3 is the chemical formula for Sodium Bromate.