Answer:
For most applications, it is simple, dependable, efficient, and straightforward to apply - a simple trigger signal may be provided, with appropriate processing if necessary. This implies that an appropriate trigger signal may be generated using other electrical circuits and then applied to the SCR.
Explanation:
Explanation:
As a general rule of thumb, the large the diameter of a bearing, bushing or pin, the larger the tolerance range,” Brieschke points out. “The inverse is true for smaller-diameter pieces.”
Mike Brieschke, vice president of sales at Aries Engineering, says a 0.25-inch-diameter metal dowel that is press-fit into a mild steel hole usually has an interference of ±0.0015 inch. Parts in noncritical assemblies tend to have looser tolerances
please rate brainliest if helps and follow
Hai!
Please name what kind of Script your Using then I would love to help.
Java
C
C#
C++
Lua
JavaScript
HTML
Python
Answer:
Christmas is celebrated to remember the birth of Jesus Christ, who Christians believe is the Son of God.
Explanation:
Christmas is celebrated to remember the birth of Jesus Christ, who Christians believe is the Son of God. The name 'Christmas' comes from the Mass of Christ (or Jesus). A Mass service (which is sometimes called Communion or Eucharist) is where Christians remember that Jesus died for us and then came back to life.
Answer:
The temperature of the first exit (feed to water heater) is at 330.15ºC. The second exit (exit of the turbine) is at 141ºC. The turbine Power output (if efficiency is %100) is 3165.46 KW
Explanation:
If we are talking of a steam turbine, the work done by the steam is done in an adiabatic process. To determine the temperature of the 2 exits, we have to find at which temperature of the steam with 1000KPa and 200KPa we have the same entropy of the steam entrance.
In this case for steam at 3000 kPa, 500°C, s= 7.2345Kj/kg K. i=3456.18 KJ/Kg
For steam at 1000 kPa and s= 7.2345Kj/kg K → T= 330.15ºC i=3116.48KJ/Kg
For steam at 200 kPa and s= 7.2345Kj/kg K → T= 141ºC i=2749.74KJ/Kg
For the power output, we have to multiply the steam flow with the enthalpic jump.
The addition of the 2 jumps is the total power output.