Answer:
Despite being such prominent feature on our planet, much of the mid-ocean ridge system remains a mystery. While we have mapped about half of the global mid-ocean ridge in high resolution, less than one percent of the mid-ocean ridge has been explored in detail using submersibles or remotely operated vehicles. so therefore we do not have enough information about them to know what will happen
Explanation:
A mid-ocean ridge or mid-oceanic ridge is an underwater mountain range, formed by plate tectonics. This uplifting of the ocean floor occurs when convection currents rise in the mantle beneath the oceanic crust and create magma where two tectonic plates meet at a divergent boundary. Mid-ocean ridges occur along divergent plate boundaries, where new ocean floor is created as the Earth’s tectonic plates spread apart. As the plates separate, molten rock rises to the seafloor, producing enormous volcanic eruptions of basalt. The speed of spreading affects the shape of a ridge slower spreading rates result in steep, irregular topography while faster spreading rates produce much wider profiles and more gentle slopes.
Answer:
a
The total distance is 
b
The displacement is

Explanation:
From the question we are told that
Distance traveled by the ball for first player
to the right
Distance traveled by the ball for second player
to the left
The total distance traveled by the ball is mathematically represented as

Substituting values


The displacement is mathematically represented as
This is because displacement deal with direction and from the question we are told that right is positive and left is negative
Substituting values


<h2>
Answer: Invariance of the speed of light in vacuum </h2>
Special relativity was proposed on 1905 by Einstein, who developed his theory based on the following two postulates:
<em>1. The laws of physics are the same in all inertial systems. There is no preferential system. </em>
<em>2. The speed of light in vacuum has the same value for all inertial systems. </em>
<em></em>
Focusing on the first postulate, it can be affirmed that any measurement on a body is made with reference to the system in which it is being measured.
In addition, it deals with the <u>dilation of time</u> stating that <u>time passes at different rates in regions of different gravitational potential</u>. That is, the greater the local distortion of space-time due to gravity, the slower the time passes.
On the other hand, following what relativity establishes, bodies within a gravitational field follow a curved space path.
Answer:
9.8 × 10⁴Pa
Explanation:
Given:
Velocity V₁ = 12m/s
Pressure P₁ = 3 × 10⁴ Pa
From continuity equation we have
ρA₁V₁ = ρA₂V₂
A₁V₁ = A₂V₂
making V₂ the subject of the equation;

the pipe is widened to twice its original radius,
r₂ = 2r₁
then the cross-sectional area A₂ = 4A₁
⇒ 

This implies that the water speed will drop by a factor of
because of the increase the pipe cross-sectional area.
The Bernoulli Equation;
Energy per unit volume before = Energy per unit volume after
p₁ +
ρV₁² + ρgh₁ = p₂ +
ρV₂² + ρgh₂
Total pressure is constant and
= P =
ρV₂²ρV²
p₁ +
ρV₁² = p₂ +
ρV₂²
Making p₂ the subject of the equation above;
p₂ = p₁ +
ρV₁² -
ρV₂²
But
so,
p₂ = p₁ +
ρV₁² -
ρ
p₂ = 3.0 x 10⁴ + (
× 1000 × 12²) - (
× 1000 × 12²/4² )
P₂ = 3.0 x 10⁴ + 7.2 × 10⁴ - 4.05 x 10³
P₂ = 9.79 × 10⁴Pa
P₂ = 9.8 × 10⁴Pa