1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adelina 88 [10]
3 years ago
14

- As you ride in a car, both you and the car are moving

Physics
1 answer:
KIM [24]3 years ago
3 0

Answer:

c. Your body is at rest but its inertia puts it in motion

Explanation:

You might be interested in
A car has an acceleration of 4m/s^2 to the east for 5 seconds. What is the change in velocity?
Natali5045456 [20]

Answer:

a= 4m/s^2

t = 5 secs

v = at

v = 4 × 5

v =20 m/s

3 0
2 years ago
Three masses are located in the x-y plane as follows: a mass of 6 kg is located at (0 m, 0 m), a mass of 4 kg is located at (3 m
Natali [406]
<h2>Answer:</h2>

D. (1m, 0.5m)

<h2>Explanation:</h2>

The center of mass (or center of gravity) of a system of particles is the point where the weight acts when the individual particles are replaced by a single particle of equivalent mass. For the three masses, the coordinates of the center of mass C(x, y) is given by;

x = (m₁x₁ + m₂x₂ + m₃x₃) / M       ----------------(i)

y = (m₁y₁ + m₂y₂ + m₃y₃) / M       ----------------(ii)

Where;

M = sum of the masses

m₁ and x₁ = mass and position of first mass in the x direction.

m₂ and x₂ = mass and position of second mass in the x direction.

m₃ and x₃ = mass and position of third mass in the x direction.

y₁ , y₂ and y₃ = positions of the first, second and third masses respectively in the y direction.

From the question;

m₁ = 6kg

m₂ = 4kg

m₃ = 2kg

x₁ = 0m

x₂ = 3m

x₃ = 0m

y₁ = 0m

y₂ = 0m

y₃ = 3m

M = m₁ + m₂ + m₃ = 6 + 4 + 2 = 12kg

Substitute these values into equations (i) and (ii) as follows;

x = ((6x0) + (4x3) + (2x0)) / 12

x = 12 / 12

x = 1 m  

y = (6x0) + (4x0) + (2x3)) / 12

y = 6 / 12

y = 0.5m

Therefore, the center of mass of the system is at (1m, 0.5m)

7 0
3 years ago
Is it possible for an object to be in motion without any external force applied? justify
Rudiy27
Newton’s first law is commonly stated as:
An object at rest stays at rest and an object in motion stays in motion.
However, this is missing an important element related to forces. We could expand it by stating:
An object at rest stays at rest and an object in motion stays in motion at a constant speed and direction unless acted upon by an unbalanced force.
By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it will simply slow down or stop. Right?
This, of course, is not true. In the absence of any forces, no force is required to keep an object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down because of air resistance (a force). An object’s velocity will only remain constant in the absence of any forces or if the forces that act on it cancel each other out, i.e. the net force adds up to zero. This is often referred to as equilibrium. The falling ball will reach a terminal velocity (that stays constant) once the force of air resistance equals the force of gravity.

Hope this help
8 0
3 years ago
FIGURE 2 shows a 1.5 kg block is hung by a light string which is wound around a smooth pulley of radius 20 cm. The moment of ine
Sindrei [870]

Answer:

At t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

Explanation:

First, we consider all the forces acting on the pulley.

There is only one force acting on the pulley, and that is due to the 1.5 kg mass attached to it.

Therefore, the torque on the pulley is

\tau=Fd=mg\cdot R

where m is the mass of the block, g is the acceleration due to gravity, and R is the radius of the pulley.

Now we also know that the torque is related to angular acceleration α by

\tau=I\alpha

therefore, equating this to the above equation gives

mg\cdot R=I\alpha

solving for alpha gives

\alpha=\frac{mgR}{I}

Now putting in m = 1.5 kg, g = 9.8 m/s^2, R = 20 cm = 0.20 m, and I = 2 kg m^2 gives

\alpha=\frac{1.5\cdot9.8\cdot0.20}{2}\boxed{\alpha=1.47s^{-2}}

Now that we have the value of the angular acceleration in hand, we can use the kinematics equations for the rotational motion to find the angular velocity and the number of revolutions at t = 4.2 s.

The first kinematic equation we use is

\theta=\theta_0+\omega_0t+\frac{1}{2}\alpha t^2

since the pulley starts from rest ω0 = 0 and theta = 0; therefore, we have

\theta=\frac{1}{2}\alpha t^2

Therefore, ar t = 4.2 s, the above gives

\theta=\frac{1}{2}(1.47)(4.2)^2

\boxed{\theta=12.97}

So how many revolutions is this?

To find out we just divide by 2 pi:

\#\text{rev}=\frac{\theta}{2\pi}=\frac{12.97}{2\pi}\boxed{\#\text{rev}=2.06}

Or about 2 revolutions.

Now to find the angular velocity at t = 4.2 s, we use another rotational kinematics equation:

\omega^2=w^2_0+2\alpha(\Delta\theta)_{}

Since the pulley starts from rest, ω0 = 0. The change in angle Δθ we calculated above is 12.97. The value of alpha we already know to be 1.47; therefore, the above becomes:

\omega^2=0+2(1.47)(12.97)w^2=38.12\boxed{\omega=6.17.}

Hence, the angular velocity at t = 4.2 w is 6. 17 rad / s

To summerise:

at t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

3 0
1 year ago
How does an atom of potassium-41 become a potassium ion with a +1 charge? 19 K 39.10
stiv31 [10]

It is very difficult for an atom to accept a proton. It can only be done under very special circumstances. So A and C are both incorrect. I don't see how D is possible. The atom does lose 1 electron, but how it gets 21 is think air.

The answer is B which is exactly what happens.

5 0
3 years ago
Read 2 more answers
Other questions:
  • To practice tactics box 13.1 hydrostatics. in problems about liquids in hydrostatic equilibrium, you often need to find the pres
    9·1 answer
  • In an 8.00 km race, one runner runs at a steady 12.0 km/h and another runs at 14.8 km/h . How far from the finish line is the sl
    5·1 answer
  • Can velocity of an object be negative when it’s acceleration is positive?
    9·2 answers
  • A comet is cruising through the Solar System at a speed of 50,000 kilometers per hour for 4.5 hours time. What is the total dist
    9·1 answer
  • The amplitude of a wave is
    10·1 answer
  • Deb is planning to paint a wall of her house that has two regular hexagonal windows. Painting the wall costs $1.75 per square fo
    12·1 answer
  • A battery connected across two parallel metal plates. There is a uniform E-field between the plates, and a positive charge exper
    8·1 answer
  • As the train in the image moves to the right, which person hears the train horn at a lower pitch?​
    10·1 answer
  • A 0.413 kg block requires 1.09 N
    12·1 answer
  • A motorcycle is moving at a constant speed of 40 km/h. How long does it take the motorcycle to travel a distance of 10 km
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!