Answer:
D. The equipment needed to accommodate the high temperature and pressure will be expensive to produce.
Explanation:
Hello!
In this case, for the considered reaction, it is clear it is an exothermic reaction because it produces energy; and therefore, the higher the temperature the more reactants are yielded as the reverse reaction is favored. Moreover, since the effect of pressure is verified as favoring the side with fewer moles; in this case the products side (2 moles of ammonia).
In such a way, the high pressure favors the formation of ammonia whereas the high temperature the formation of hydrogen and nitrogen and therefore, option A is ruled out. Since the high pressure shifts the reaction rightwards and the high temperature leftwards, we would not be able to know whether the reaction has ended or not because it will be a "go and come back" process, that is why B is also discarded. Now, since hydrogen and nitrogen would be the "wastes", we discard C because they are not toxic. That is why the most accurate answer would be D. because it is actually true that such equipment is quite expensive.
Best regards!
Answer:
I can't answer this as I am not able to read the Question
Answer:
Density is 6.16g/L
Explanation:
<em>... at exactly -15°C and exactly 1atm...</em>
<em />
Using general gas law:
PV = nRT
We can find density (Ratio of mass and volume) in an ideal gas as follows:
P/RT = n/V
<em>To convert moles to grams we need to multiply the moles with Molar Weight, MW:</em>
n*MW = m
n = m/MW
P/RT = m/V*MW
P*MW/RT = m/V
<em>Where P is pressure: 1atm;</em>
<em>MW of chlorine pentafluoride: 130.445g/mol</em>
<em>R is gas constant: 0.082atmL/molK</em>
<em>And T is absolute temperature: -15°C+273.15 = 258.15K</em>
<em />
Replacing:
P*MW/RT = m/V
1atm*130.445g/mol / 0.082atmL/molK*258.15K = m/V
6.16g/L = m/V
<h3>Density of the gas is 6.16g/L</h3>
<em> </em>
Answer:
1.40 M [OH⁻]
Explanation:
This compound dissociates into 3 ions, but since we are asked about [OH⁻], it's only 2. Therefore, multiply the molarity of the solution by the number of ions that [OH⁻] dissociates into:
2 × 0.70 M = 1.40 M
Hope this helps! Sorry that you got a link. Those are getting really annoying