<span>B. S⁰(s) + 2H⁺ + 2e⁻ –--> H2S⁰(g)
by mass: 1 S and 2 H ----> 2 H and 1S True.
by charge : 0 +(2*(+1)) + 2*(-1) = 0, 0+2-2=0, 0 = 0 True.</span>
Answer:
0.3267 M
Explanation:
To solve this problem, first we calculate how many moles of Mn(ClO₄)₂ are contained in 23.640 g of Mn(ClO₄)₂·6H₂O.
Keep in mind that the crystals of Mn(ClO₄)₂ are hydrated, and <em>we need to consider those six water molecules when calculating the molar mass of the crystals</em>.
Molar mass of Mn(ClO₄)₂·6H₂O = 54.94 + (35.45+16*4)*2 + 6*18 = 361.84 g/mol
Now we <u>proceed to calculate</u>:
- 23.640 g Mn(ClO₄)₂·6H₂O ÷ 361.84 g/mol = 0.0653 mol Mn(ClO₄)₂·6H₂O = mol Mn(ClO₄)₂
Now we divide the moles by the volume, to <u>calculate molarity</u>:
- 200 mL⇒ 200/1000 = 0.200 L
- 0.0653 mol Mn(ClO₄)₂ / 0.200 L = 0.3267 M
If there were an element above fluorine, its state would be a gas. This is because fluorine is located in the non-metal section of the periodic table which can all be found as a gas at room temperature.
Answer:
c
Explanation:
the rate of a forward process must be exactly balanced by the rate of the reverse process.
9.74x 2351 that's the answer