Answer:
True.
But it only changes in physical change.
How?
Explanation:
The chemical reaction produces a new substance with new and different physical and chemical properties. Matter is never destroyed or created in chemical reactions. The particles of one substance are rearranged to form a new substance.
In a physical change, a substance's physical properties may change.
A chemical change is a permanent change. A Physical change affects only physical properties i.e. shape, size, etc. ... Some examples of physical change are freezing of water, melting of wax, boiling of water, etc. A few examples of chemical change are digestion of food, burning of coal, rusting, etc.
Hope this helps!
Answer:
0.37atm
Explanation:
Given parameters:
Initial pressure = 0.25atm
Initial temperature = 0°C = 273K
Final temperature = 125°C = 125 + 273 = 398K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we use a derivative of the combined gas law;
=
P and T are pressure and temperature
1 and 2 are initial and final values
=
P2 = 0.37atm
Answer:

⇒ We have Na2O + H2O --> NaOH. We have 2 sodiums and 2 oxygens and 2 hydrogens on the left side, but only one of each on the right side.
Sodium Oxide + Water → Sodium Hydroxide
⇒ Na2O + H2O → 2NaOH .
Sodium oxide is used in ceramics and glasses. Sodium oxide reacts exothermically with cold water to produce sodium hydroxide solution.
Answer:
(R)-but-3-en-2-ylbenzene
Explanation:
In this reaction, we have a very <u>strong base</u> (<em>sodium ethoxide</em>). This base, will remove a hydrogen producing a double bond. We know that the reaction occurs through an <u>E2 mechanism</u>, therefore, the hydrogen that is removed must have an <u>angle of 180º</u> with respect to the leaving group (the "OH"). This is known as the <u>anti-periplanar configuration</u>.
The hydrogen that has this configuration is the one that placed with the <u>dashed bond</u> (<em>red hydrogen</em>). In such a way, that the base will remove this hydrogen, the "OH" will leave the molecule and a double bond will be formed between the methyl and the carbon that was previously attached to the "OH", producing the molecule (R) -but-3- en-2-ylbenzene.
See figure 1
I hope it helps!
Booooooommmm!.................