Answer:
i dont know but i will take the points tho hahah
Explanation:
Answer: hello some parts of your question is missing attached below is the missing information
The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through aluminum radiator tubes of thickness d that release heat to the outside air by conduction. The average temperature gradient between the coolant and the outside air is about 130 K/mm . The term ΔT/d is called the temperature gradient which is the temperature difference ΔT between coolant inside and the air outside per unit thickness of tube
answer : Total surface area = 3/2 * area of old radiator
Explanation:
we will use this relation
K = 
change in T = ΔT
therefore New Area ( A ) = 3/2 * area of old radiator
Given that the thermal conductivity is the same in the new and old radiators
Answer:
note:
solution is attached due to error in mathematical equation. please find the attachment
Answer:
a)Are generally associated with factor.
Explanation:
We know that losses are two types
1.Major loss :Due to friction of pipe surface
2.Minor loss :Due to change in the direction of flow
As we know that when any hindrance is produced during the flow of fluid then it leads to generate the energy losses.If flow is along uniform diameter pipe then there will not be any loss but if any valve and fitting placed is the path of fluid flow due to this direction of fluid flow changes and it produce losses in the energy.
Lot' of experimental data tell us that loss in the energy due to valve and fitting are generally associated with K factor.These losses are given as

Answer:
Gc(s) = 
Explanation:
comparing the standard approximation with the plot attached we can tune the PI gains so that the desired response is obtained. this is because the time requirement of the setting is met while the %OS requirement is not achieved instead a 12% OS is seen from the plot.
attached is the detailed solution and the plot in Matlab