Answer:64.10 Btu/lbm
Explanation:
Work done in an isothermally compressed steady flow device is expressed as
Work done = P₁V₁ In { P₁/ P₂}
Work done=RT In { P₁/ P₂}
where P₁=13 psia
P₂= 80 psia
Temperature =°F Temperature is convert to °R
T(°R) = T(°F) + 459.67
T(°R) = 55°F+ 459.67
=514.67T(°R)
According to the properties of molar gas, gas constant and critical properties table, R which s the gas constant of air is given as 0.06855 Btu/lbm
Work = RT In { P₁/ P₂}
0.06855 x 514.67 In { 13/ 80}
=0.06855 x 514.67 In {0.1625}
= 0.06855 x 514.67 x -1.817
=- 64.10Btu/lbm
The required work therefore for this isothermal compression is 64.10 Btu/lbm
Answer:
Chemical Engineers use chemistry, math and physics to design and use to make chemical products. The fibers in clothing are designed by chemical engineers.
Answer:
volumetric flow rate = 
Velocity in pipe section 1 = 
velocity in pipe section 2 = 12.79 m/s
Explanation:
We can obtain the volume flow rate from the mass flow rate by utilizing the fact that the fluid has the same density when measuring the mass flow rate and the volumetric flow rates.
The density of water is = 997 kg/m³
density = mass/ volume
since we are given the mass, therefore, the volume will be mass/density
25/997 = 
volumetric flow rate = 
Average velocity calculations:
<em>Pipe section A:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

<em>Pipe section B:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

Answer:
The maximum theoretical height that the pump can be placed above liquid level is 
Explanation:
To pump the water, we need to avoid cavitation. Cavitation is a phenomenon in which liquid experiences a phase transition into the vapour phase because pressure drops below the liquid's vapour pressure at that temperature. As a liquid is pumped upwards, it's pressure drops. to see why, let's look at Bernoulli's equation:

(
stands here for density,
for height)
Now, we are assuming that there aren't friction losses here. If we assume further that the fluid is pumped out at a very small rate, the velocity term would be negligible, and we get:


This means that pressure drop is proportional to the suction lift's height.
We want the pressure drop to be small enough for the fluid's pressure to be always above vapour pressure, in the extreme the fluid's pressure will be almost equal to vapour pressure.
That means:

We insert that into our last equation and get:

And that is the absolute highest height that the pump could bear. This, assuming that there isn't friction on the suction pipe's walls, in reality the height might be much less, depending on the system's pipes and pump.