1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WINSTONCH [101]
3 years ago
9

What is the probability (rounded to the nearest whole percent) that a randomly selected gym member would buy grape vitamin water

but not passion fruit vitamin water? 11% 24% 9% 31%
Mathematics
1 answer:
joja [24]3 years ago
6 0
11% hands down people
You might be interested in
What is x if f ( x) = 23?
musickatia [10]

In the expression f(x)=23, x is not a variable. f(x) means “a function of x” or “f of x” and is in practice another way of substituting for the variable y, that is, we are saying:

y=23.

That means x is unspecified and could be anything. So on the xy plane, this is a straight horizontal line, 23 units above the x axis. That would be the best way to interpret this, although it is a little ambiguous.

Usually functions of x are expressed in terms of x, such as:

f(x) = x^2

6 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Write the equation of this circle in standard form. A) (x - 2)2 + (y - 3)2 = 4
Vika [28.1K]

Answer:

x^2 + y^2 -4x -6y + 9 = 0

Step-by-step explanation:

To write a circle in standard form, expand the equation of the circle and move all terms to one side.

(x-2)^2 + (y-3)^2 = 4\\x^2 -4x + 4 + y^2 -6y + 9 = 4\\x^2 +y^2 - 4x - 6y + 13 = 4\\x^2 + y^2 -4x -6y + 9 = 0

8 0
3 years ago
What is the value of the expression?<br> 84-24428<br> 13<br> 115<br> 13.4<br> 152<br> O
timama [110]

Answer:

WWhat

Step-by-step explanation:

6 0
3 years ago
What is the answer to -12=2+5v+2v
katovenus [111]

Answer:

Isolate the variable by dividing each side by factors that don't contain the variable.

v  =  − 2

Step-by-step explanation: No the right answer? Let me know!

7 0
3 years ago
Other questions:
  • Please help i have 6 days to give it back otherwise i fail pt2/2
    5·1 answer
  • K(x)=10x+5 inverse function
    12·1 answer
  • Y•7=7y what math property is this
    11·1 answer
  • The veloctiy of sound in air is given by the equation v=25 times the square root of 365+t where v is the velocity in meters per
    13·1 answer
  • What is the quotient (3x^4-4x^2+8x-1)/(x-2)?
    5·2 answers
  • Math Need Help
    12·2 answers
  • What is the surface area of the figure shown?
    10·1 answer
  • What is the maximum number of characters allowed in a filename path?
    13·1 answer
  • In which choice are all four points on the same straight line​
    7·1 answer
  • Scarlett knits 2 centimeters of scarf each night. How many nights will
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!