Answer:
The number of Aluminium atoms present in per cubic meter is
Explanation:
Given the density of Aluminium
is 
And the atomic weight of Aluminium
is 
Also, the Avogadro's number
is 
We need to find the number of atoms per cubic meter 

Plug the given values in the formula we get,


So, the number of Aluminium atoms present in per cubic meter is
First step is to calculate the mole of each element
that is;
carbon 97.6/12=8.13moles
hydrogen= 4.9/1=4.9 moles
oxygen 52/16=3.25 moles
nitrogen=45.5/14=3.25 moles
step two is to calculate the mole ratio by dividing with the smallest number of moles
that is divide each mole with 3.25moles
carbon=8.13/3.25 =5/2
hydrogen=4.9/3.25= 3/2
oxygen=3.25/3.25=1
nitrogen=3.25/3.25=1
step 3; multiply all the mole ratio by 2 to remove the fraction
carbon=5/2 x2 =5
hydrogen=3/2 x2=3
oxygen=1 x2=2
nitrogen =1x2=2
therefore the empirical formula is C5H3O2N2(answer c)
Heterogenous mixtures are unevenly mixed. Like oil and vinegar in vinaigrette if it is not emulsified well enough and they separate. Any case where two things are not evenly distributed within each other.
Homogenous mixtures are evenly mixed throughout. Like salt water or kool-aid (when it's mixed).
Hope this helps!
The name of the compound by using the <u>IUPAC nomenclature of organic compounds</u> is 1 -octene. The correct option is the last option - 1-octene.
<h3>Nomenclature of Organic compounds</h3>
From the question, we are to determine the name of the given molecule.
To name the compound, we will follow the IUPAC rules.
Some of IUPAC rules are
- Find the longest continuous carbon chain. Determine the root name for this parent chain.
- For Alkenes (organic compounds with double bond), number the chain of carbons that includes the C=C so that the C=C has the lower position number. Change “ane” to “ene” and assign a position number to the first carbon of the C=C.
The given compound has 8 carbons and a double bond. The root name of the compound is octane.
By <u>IUPAC rules</u>, the compound is an <u>Octene</u>.
Since the double bond is between carbon-1 and carbon-2. The compound becomes 1-octene.
Hence, the name of the compound by using the <u>IUPAC nomenclature of organic compounds</u> is 1 -octene. The correct option is the last option - 1-octene.
Learn more on Nomenclature of Organic compounds here: brainly.com/question/26754333
The diagram for the compound is attached below.