Answer:
Y = 4.775 x 10⁹ Pa = 4.775 GPa
Explanation:
First, we calculate the stress on the rod:

Now, we calculate the strain:

Now, we will calculate the Young's Modulus (Y):

<u>Y = 4.775 x 10⁹ Pa = 4.775 GPa</u>
Organ system is the correct response hope this helps
Answer:
When an electrical current passes through a wire, a magnetic field is generated around it. Likewise, if the magnetic field around a wire is changed ( for example by rotating a coil inside a stationary manger), electricity will move through the wire.
The answer is C because the three metals that are magnetic are iron, nickel, and cobalt, and it is metal so it is a conductor of electricity.