Answer:

Explanation:
The maximum velocity of an object moving in a curve beyond which it will slide off the curve is given by the relationship in equation (1);

where
is the coefficient of friction between the object and the surface of the curve, g is acceleration due to gravity and r is the radius of the curve.
Given;
v = 0.8m/s
g = 
r = ?

In order to solve for
, we can simply make it the subject of formula from equation (1) as follows;

since we were not given the value of r, we can just substitute other known values, then solve and leave the answer in terms of r.
Therefore;


The density of the object is the ratio of its mass and volume. From the given dimensions above, we determine the volume through the equation,
V = L x W x H
Substituting,
V = (3 cm)(2 cm)(1 cm) = 6 cm³
From the idea presented above,
d = m/V
Substituting the known values,
d = (30 g)/ (6 cm³) = 5 g/cm³
ANSWER: 5 g/cm³
Answer:
2. mechanical weathering can produce smaller pieces of rock that have more surface area for chemical weathering to work Explanation:
Mechanical weathering involves activities of living organisms or some geological processes. The bigger rocks are usually reduced to smaller rocks and further reduction might be limited or not posibble mechanically. This reduced rocks now increases the surface area available for chemical weathering; which further reduces the sizes of the rocks below the size range of mechanical weathering. one will recall that the rate of chemical reaction increases with exposed surface area.
Well hydrogen would be the main element, as a process called nuclear fusion with both helium and hydrogen atoms occurs within stars. And planets are the products of dead stars that have burned through their supplies of hydrogen, helium, and carbon. Planets are a product of this.