Answer:
Case 1: <u>Pushing</u> Diagram 1
Leaning over and Pushing the heavy box from the floor, the push will be divided in to two parts, one is horizontal that can help the box move, and one is vertically downwards, which increases the downward force of the heavy object (an addition to the gravity) and thus increases friction, making it very hard to push. When you push at certain angle, you are exhibiting two forces as shown in diagram 1.
- Horizontal force acting along the plane.
- Vertical force downward perpendicular to the surface.
Case 2: <u>Pulling</u> Diagram 2
Pulling on a rope similar object at the same angle, the pull can be divided into two parts, one is horizontal that can help the box move, and one is vertically upwards, which decreases the downwards force of the box (a subtraction in the gravity) and thus decreases friction, making it very easy to pull. When you pull at a certain angle, you are exhibiting two forces as shown in diagram 2.
- Horizontal force acting along the plane.
- Vertical force upward perpendicular to the surface.
So, in the case of pushing, it adds an extra weight on the object, which results in difficulty to push that object at the same angle. In case of pulling, the upward perpendicular force, it tries to lift the object upward and divided the weight partially. Thus making it easier to move the object at same angle.
Vertical acceleration = 300 m/s²
Initial vertical velocity = 0
Time of flight = 8.0 s
Calculate the height after 8 s.
h = (1/2)*(300 m/s²)*(8.0 s)² = 9600 m
Answer: 9600 m
Answer:
True. The two laws of thermal radiation state; 1) "Each square meter of a hotter object
Explanation: