1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRISSAK [1]
3 years ago
10

jason hits a baseball off a tee toward right field. the ball has a horizontal velocity of 10 m/s and lands 5 meters from the tee

. what is the height of the tee? show your work, including formula(s) and units.
Physics
1 answer:
Leni [432]3 years ago
8 0

Answer:

The height is 1,225 meters

Explanation:

DistanceX= speedX × time ⇒ time= (5 meters) ÷ (10 meters/second) = 0,5 seconds

DistanceY= high= (1/2) × g × (time^2) = (1/2) × 9,8 (meters/(second^2)) × 0,25 (second^2) = 1,225 meters

You might be interested in
A 7600 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreci
ollegr [7]

Answer:

a) The rocket reaches a maximum height of 737.577 meters.

b) The rocket will come crashing down approximately 17.655 seconds after engine failure.

Explanation:

a) Let suppose that rocket accelerates uniformly in the two stages. First, rocket is accelerates due to engine and second, it is decelerated by gravity.

1st Stage - Engine

Given that initial velocity, acceleration and travelled distance are known, we determine final velocity (v), measured in meters per second, by using this kinematic equation:

v = \sqrt{v_{o}^{2} +2\cdot a\cdot \Delta s} (1)

Where:

a - Acceleration, measured in meters per square second.

\Delta s - Travelled distance, measured in meters.

v_{o} - Initial velocity, measured in meters per second.

If we know that v_{o} = 0\,\frac{m}{s}, a = 2.35\,\frac{m}{s^{2}} and \Delta s = 595\,m, the final velocity of the rocket is:

v = \sqrt{\left(0\,\frac{m}{s} \right)^{2}+2\cdot \left(2.35\,\frac{m}{s^{2}} \right)\cdot (595\,m)}

v\approx 52.882\,\frac{m}{s}

The time associated with this launch (t), measured in seconds, is:

t = \frac{v-v_{o}}{a}

t = \frac{52.882\,\frac{m}{s}-0\,\frac{m}{s}}{2.35\,\frac{m}{s} }

t = 22.503\,s

2nd Stage - Gravity

The rocket reaches its maximum height when final velocity is zero:

v^{2} = v_{o}^{2} + 2\cdot a\cdot (s-s_{o}) (2)

Where:

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

If we know that v_{o} = 52.882\,\frac{m}{s}, v = 0\,\frac{m}{s}, a = -9.807\,\frac{m}{s^{2}} and s_{o} = 595\,m, then the maximum height reached by the rocket is:

v^{2} -v_{o}^{2} = 2\cdot a\cdot (s-s_{o})

s-s_{o} = \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = s_{o} + \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = 595\,m + \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(52.882\,\frac{m}{s} \right)^{2}}{2\cdot \left(-9.807\,\frac{m}{s^{2}} \right)}

s = 737.577\,m

The rocket reaches a maximum height of 737.577 meters.

b) The time needed for the rocket to crash down to the launch pad is determined by the following kinematic equation:

s = s_{o} + v_{o}\cdot t +\frac{1}{2}\cdot a \cdot t^{2} (2)

Where:

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

v_{o} - Initial speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that s_{o} = 595\,m, v_{o} = 52.882\,\frac{m}{s}, s = 0\,m and a = -9.807\,\frac{m}{s^{2}}, then the time needed by the rocket is:

0\,m = 595\,m + \left(52.882\,\frac{m}{s} \right)\cdot t + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot t^{2}

-4.904\cdot t^{2}+52.882\cdot t +595 = 0

Then, we solve this polynomial by Quadratic Formula:

t_{1}\approx 17.655\,s, t_{2} \approx -6.872\,s

Only the first root is solution that is physically reasonable. Hence, the rocket will come crashing down approximately 17.655 seconds after engine failure.

7 0
3 years ago
Suppose you have two solid bars, both with square cross-sections of 1 cm2. They are both 24.6 cm long, but one is made of copper
vodka [1.7K]

Explanation:

Expression to calculate thermal resistance for iron (R_{I}) is as follows.

             R_{I} = \frac{L_{I}}{k_{I} \times A_{I}}  

where,   L_{I} = length of the iron bar

             k_{I} = thermal conductivity of iron

             A_{I} = Area of cross-section for the iron bar

Thermal resistance for copper (R_{c}) = \frac{L_{c}}{k_{c} \times A_{c}}[/tex]

where,  L_{c} = length of copper bar

             k_{c} = thermal conductivity of copper

            A_{c} = Area of cross-section for the copper bar

Now, expression for the transfer of heat per unit cell is as follows.

           Q = \frac{(100^{o} - 0^{o}}{\frac{L_{I}}{k_{I}.A_{I}} + \frac{L_{c}}{k_{c}.A_{c}}}

 Putting the given values into the above formula as follows.

       Q = \frac{(100^{o} - 0^{o})}{\frac{L_{I}}{k_{I}.A_{I}} + \frac{L_{c}}{k_{c}.A_{c}}}

  = \frac{(100^{o} - 0^{o})}{21 \times 10^{-2} m[\frac{1}{73 \times 10^{-4}m^{2}} + \frac{1}{386 \times 10^{-4}m^{2}}}

           = 2.92 Joule

It is known that heat transfer per unit time is equal to the power conducted through the rod. Hence,

                 P = \frac{Q}{T}

Here, T is 1 second so, power conducted is equal to heat transferred.

So,           P = 2.92 watt

Thus, we can conclude that 2.92 watt power will be conducted through the rod when it reaches steady state.

7 0
3 years ago
In the chemical formula for an ionic compound, which item is written first?
tatuchka [14]

Explanation:

C,

.hahxxjdndjdndjgfndkndidjdodnxondos

5 0
3 years ago
Which of the following BEST describes what a thermometer measures
asambeis [7]

A theromometer is the increase or decrease of earths atmospheric temperture, thats how you would measure the temperture of the air around you.

7 0
3 years ago
A young child is playing with a very flexible hose. She is moving her hand back and forth making transverse type waves. She move
aev [14]

Answer:

The waves will increase in frequency

Explanation:

As the young girl moves her hand back and forth faster, it will be observed that number of back and forth motions increase every second. Also the distance between crest and trough of the wave (wavelength) will be reduced as she moves her hand back and forth faster.

Frequency = number of turns (moves) per second

The waves will increase in frequency since there will be more number of back and forth motions in every second.

Also,

The distance between crest and trough will be reduced, which implies that there will be decrease in waves wavelength.

This can also be verified using wave equation;

V = Fλ

At constant velocity,

F ∝ ¹/λ

Thus, decrease in wavelength will cause increase in frequency of the waves.

The right answer is : The waves will increase in frequency

5 0
3 years ago
Other questions:
  • Help needed ASAP will give brainliest
    8·2 answers
  • Can you answer this question about work and force?
    6·1 answer
  • A car with a mass of 860 kg sits at the top of a 32 meter high hill. Describe the transformations between potential and kinetic
    11·1 answer
  • Is the topic of atoms and elements a branch of physics??
    13·1 answer
  • In many cartoon shows, a character runs of a cliff, realizes his predicament and lets out a scream. He continues to scream as he
    12·1 answer
  • Fill in the blank. When using a wrench if you double the length of the wrench (effort arm), you have ______ the required force t
    11·1 answer
  • A car with a mass of 1500 kg is moving at a rate of 4 m/s
    6·1 answer
  • A spring has a spring constant of 330 n/m. how far is the spring compressed when 150 newtons of force are used?
    10·1 answer
  • Two forces act in opposite directions on a wood block. What will happen if the forces are unbalanced?
    6·1 answer
  • A toy doll and a toy robot are standing on a frictionless surface facing each other. The doll has a mass of 0. 20 kg, and the ro
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!