Answer:
Playing hockey, driving a car, and even simply taking a walk are all everyday examples of Newton's laws of motion.
Humans need a digestive system to do cellular respiration, which produces energy used for growth and movement.
Plants do not need one as they make their own energy through photosynthesis. The process produces glucose, which is a form of energy for the plants.
Answer:
Looks like a cosine function graph. The wave pattern is transversal waves . The faster the amplitude the higher the wave. The force of the drop hitting the water pushes the water down and out causing waves If the water hits from a higher amplitude the waves raise bigger . When you increase the frequency of the water drops the waves move faster but no bigger. When you increase the frequency of the water drops the wave ripples faster .
Explanation:
Taking shorter showers, turning off the lights when you aren't in a room, use energy efficient lightbulbs like LED's, use the air conditioning only when you really need it, and use the heat less in the winter.
Answer:
the acceleration due to gravity g at the surface is proportional to the planet radius R (g ∝ R)
Explanation:
according to newton's law of universal gravitation ( we will neglect relativistic effects)
F= G*m*M/d² , G= constant , M= planet mass , m= mass of an object , d=distance between the object and the centre of mass of the planet
if we assume that the planet has a spherical shape, the object mass at the surface is at a distance d=R (radius) from the centre of mass and the planet volume is V=4/3πR³ ,
since M= ρ* V = ρ* 4/3πR³ , ρ= density
F = G*m*M/R² = G*m*ρ* 4/3πR³/R²= G*ρ* 4/3πR
from Newton's second law
F= m*g = G*ρ*m* 4/3πR
thus
g = G*ρ* 4/3π*R = (4/3π*G*ρ)*R
g ∝ R